US 2005/0132356 Al

[0064] The result of this intermediate step of the package-
creation process is a number of files, shown in FIG. 2, for
each package that is to be constructed, including:

Package definition file (pkd) 224;

Component mapping file (cpm) 206;
Component relations file (crf) 226 OPTIONAL;
Build manifest file 202 OPTIONAL;

Registry file (rgu) 210 OPTIONAL; and

XML settings file 222; OPTIONAL

[0065] From these files, (including validation, e.g., via
XSD 203 and XSD 225) a package generation process 230
constructs a final package file 232, generally in accordance
with the flowchart shown in FIG. 6. As generally repre-
sented in FIG. 6, after some checks and validations (steps
600-610), a package collection is created from the packages
(step 612), including mapping each package to the package
definition, reading the build manifest file 208 for that
package and generating the package from that data (steps
618-622).

[0066] The process of converting the build manifest file
into a final package file list form and processing each
executable with a relmerge tool 250 (the tool that inserts
relocation information into an executable as described below
with reference to FIG. 8) is generally depicted in FIGS. 7A
and 7B. As generally represented in FIGS. 7A and 7B via
steps 700-714, a directive file is created and the build
manifest file is located and parsed, (assuming no errors
occurred) . If the parsing is successful (step 716), a device
manifest object is created at step 720, and the process
continues to step 726 of FIG. 7B, which ensures that the
device manifest object was properly created.

[0067] Via steps 732 and 756, each file listed in the build
manifest file is processed. To this end, at step 734 the file is
found and determined whether to be executable at step 738.
If not, the file is copied as is to a temporary build directory,
otherwise the file needs to be processed by a tool 250 (FIG.
2, e.g., named relmerge.exe) that enables executable code
relocation/fix-up on the device at install time (if not already
processed, as tested via step 740). If the file needs relmerge
processing, described below with reference to FIGS. 8A
and 8B, the tool is called at step 744, and if it executes
successfully, the filename is added to the device manifest.

[0068] Thus, as described above with reference to FIG.
7A and 7B, the file contents for a package, listed in the build
manifest file 208, are reviewed and any executable code is
processed prior to insertion into the package to enable
executable code relocation/fix-up on the device at install
time. To convert the build manifest file into a final package
file list form, each executable is processed with the relmerge
tool 250 that compresses the relocation information that is
already in the file, and optionally (if a .REL file is provided)
provides more detailed relocation information that allows
the operating system to separate the code and data sections
into discontiguous memory regions.

[0069] The relmerge tool operations are generally depicted
in the flow diagram of FIG. 8. As represented by step 802,
a copy of the input file is made, because the input file will
be modified by running this too. The relmerge tool 250
makes a thus copy of the input file and works from that copy,
which is deleted when the program exits.

Jun. 16, 2005

[0070] At step 804, the signature is removed, because the
signature would otherwise cause a later portion of the
process (a space accounting check, described below) to fail.
Note that since the tool 250 will be outputting a completely
different file, the signature would have no relevance to the
output file in any event. Note that in a portable executable
file, (the file format for .EXE and .DLL files), the signature
is stored at the end of the file outside of any section in the
file, wherein each section corresponds to a unit with which
data is loaded into memory by the loader. Each section has
a header, called an 032 header, or identified with the
IMAGE_SECTION_HEADER structure. As generally rep-
resented by step 806, to facilitate manipulating the file, the
tool 250 parses the PE file headers for the PE file and its
sections into suitable internal data structures. The IMAG-
E_SECTION_HEADER structure represents the image sec-
tion header format (additional details about the IMAG-
E_SECTION_HEADER may be found at
msdn.microsoft.com):

typedef struct _ IMAGE__SECTION_HEADER {
BYTE Name[IMAGE__SIZEOF_SHORT__NAME];
union {
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;
} IMAGE__SECTION__HEADER,
*PIMAGE__SECTION__HEADER;

[0071] Because the file will be re-layed out with new
headers and with padding removed, a space accounting
check (step 808) is performed to verify that there is no
information in the file that is not included in the sections of
the file. Note that there are some situations where data is
stored in an .EXE or .DLL file outside of the Sections,
including file signatures and Codeview debug directory
entries, (which are handled by the tool 250). There are other
applications that may store data outside of a section, such as
a self-extracting executable file which stores the data to be
extracted after the .EXE itself. The compressed data is not
stored in a section, otherwise the loader would attempt to
load the compressed data into memory, which is not how a
self-extracting executable should operate. The tool does not
support these instances.

[0072] Space Accounting is implemented by an instance of
the CSpaceAccounting class, which maintains an array of
SpaceBlock structures, each of which accounts for block of
data in the file. To implement Space Accounting, the areas
in the file that can be accounted for are added to the
SpaceAccounting as individual blocks. This is done for the
file headers (including the E32 and 032 headers), and for
each of the sections in the file. To accommodate CodeView
debug entries, each of those are also added as a separate
block. The blocks are then sorted by their offset within the
file. Blocks which are adjacent in the new ordering (e.g.,
Block 2 begins on the byte immediately after the last byte of
Block 1) are merged. At the end of the process, if all of the



