US 2005/0132356 Al

space in the file can be accounted for, then the list should
contain one and only one block, which starts at offset 0 and
has a length which is the length of the entire file. If that
condition is true, then the test passes. If not, an error is
reported and the tool exits.

[0073] If the space accounting check passes, the tool 250
searches for the .REL file in the same directory where the
input file is specified, as represented by step 810. If so, it is
processed via step 812, otherwise the relocation section of
the PE file is processed via step 814. More particularly, the
relocation parsing tool can parse two different types of
relocation information, namely the relocation information in
a .REL file, which contains destination section information,
and the relocation information in the .reloc section of a PE
file, which does not contain destination section information.
To this end, relocation parsing has two entry points corre-
sponding to parsing either a .REL file or the internal relo-
cations in a PE file; in a current implementation, it is legal
to call either one or the other, but not both.

[0074] In order to store the relocations, a two dimensional
array of CRelocData classes is maintained, wherein the two
dimensions of this array are the source section and the
destination section for the relocation in question. The source
section for a relocation is the section where the relocation is
located, wherein a relocation is an instruction to update a
particular piece of data in the file when the file is fixed up
to load at a particular address; the source section identifies
in which section that piece of data occurs. The source section
is inferred by looking at the relative virtual address of the
relocation and comparing that with the relative virtual
address ranges of the sections in the file.

[0075] The destination section for a relocation identifies
which section contains the piece of data to which the
relocation is pointing. An inspection technique does not
always work, because optimizers have been known to opti-
mize the code in such a way that the relocations appear to
point to other sections, e.g., it will optimize out an addition
or subtraction and place it in the reference instead of in the
code. For this reason, the destination section is not inferred
from the data. The difference between the two relocation
formats (.REL or .reloc) is whether the destination section
for the relocation is known. The .REL file explicitly iden-
tifies the destination section, while the .reloc section does
not.

[0076] As aresult, for files which only have the relocation
information in the .reloc section, the entire file needs to be
relocated together. Without destination section information,
it is not possible to separate two sections and relocate them
by different amounts. Thus, this tool needs to keep track of
both the source and destination section for each relocation,
and keep track of whether the destination sections are valid.

[0077] To do this, the process maintains a two dimensional
array of CRelocData classes, and each CRelocData class
builds its own stream of relocation data. This array is fixed
size in both dimensions, meaning that the tool can only
handle PE files with some maximum (e.g., sixteen) sections.
With that limitation, the data format for persisting the
relocations stores eight bits for each of the source and
destination sections, leaving the possibility in the data
format for 256 sections. Two other functions (CalculateR-
elocSize and WriteRelocationsToFile) then combine these

Jun. 16, 2005

individual streams by writing out a block header for each
combination of source and destination section which has at
least one relocation.

[0078] Relocation encoding is implemented in the CRe-
locData class. This class takes a stream of relocation
addresses (as individual calls to the CRelocData::AddReloc
method), and creates a byte stream which represents the
commands necessary to encode those relocations. That byte
stream can be retrieved later. To implement this, the class
effectively stays one command behind, always starting out
with a “Single” command, representing a single relocation.
Then as new relocations arrive (at the AddReloc method),
they are analyzed to see if a pattern can be formed using the
previous command and the new location. If the previous
command is a “Single” command, the previous command
can only be extended by transforming it from a “Single”
command to a “Pattern” command if the new relocation
address is DWORD aligned, and is within the maximum
skip range of the pattern command (which is 3 DWORDs).
If the previous command is a pattern command, then that
pattern already has an established form, and the next element
in the pattern can be deduced. If the new address happens to
match the next element in that pattern, the pattern is
extended by one cycle. Otherwise, a new Single command
is started.

[0079] Returning to the overall flow of FIG. 8, because
the sections of the file occur linearly in the file following the
headers, the entire file needs to be re-layed out to accom-
modate the new header format and the removal of all of the
padding between the sections. To this end, as represented by
step 818, the old RELOC section (if one existed) is
removed, and the new .CRELOC section is added at the end,
if there are any relocations to add. Using the file layout
completed in step 818, the output file is finally created at step
820, writing the headers then the data for each section to the
output file.

[0080] At step 822, relmerge.exe now tests to see if the
target output file is nk.exe. If the output file is nk.exe, then
the relmerge tool 250 processes the contents of two files, to
write out the pTOC information and RomExt information,
(described below). The relmerge tool 250 looks at the output
file because nk.exe is created by copying different files based
on debug settings. The first file processed is config.bsm.xml.
This file is produced by MakePkg.exe during Image Update
processing. It contains a textual representation of the names
and desired values for the FIXUPVARS in the system
kernel. The contents of this file are parsed and stored for
later use. The second file is the map file for the input file.
This file is processed by ProcessFixupVars. It takes the
source file path, copies it and replaces the .exe with .map and
attempts to open the map file (map files are text files
containing a large amount of information about the physical
and virtual addresses of functions and variables within the
PE file). If the map file is successfully opened, the first line
is parsed to retrieve the timestamp of the map file. The
timestamp is then compared against the timestamp in the PE
file. If they are different, a warning is produced and map file
processing stops. If the timestamps match, each line of the
file is read and a regular expression string is used to look for
each FIXUPVAR. If a match is found, the address informa-
tion is taken from the map file and is used to write the new
variable value (from config.bsm.xml) into the source file at
the correct location. At the same time, ProcessFixupVars



