US 2005/0091658 Al

and with the list of resources stored in the second field. The
privilege defines an access right of the application program
104 to access each resource in the list of resources.

[0035] An author of the application may create a manifest
such as manifest 108 with a trust information section. An
application author may also assign a strong name to the
application and sign the application’s manifest (e.g., with a
digital signature or certificate). When an application is
installed, the operating system 102 may be configured to
check one or more certificate stores to validate the certificate
and signature of the application manifest. In one embodi-
ment, only signed driver packages are installed. For
example, an enterprise may have its own certificate store.
Similarly, a particular system may have a certificate store
against which an application manifest may be validated.
Once validated, the operating system 102 may be configured
to manage trust actions based on the manifest data and
pre-configured default policies.

[0036] A manifest such as manifest 108 may be signed in
several ways. For example, manifests may be signed using
an authenticode process with the certificate kept in a store
for verification. Domain administrators may also sign mani-
fests for their particular enterprise or domain. For example,
a deployment manifest may be used to specify which
applications are signed for a particular installation. Local
administrators may also sign manifests. Each individual
machine may also be configured with a signing key.

[0037] In one embodiment, the manifest 108 may include
both a weak name and a strong name. The weak name may
correspond to a traditional application file name, while the
strong name may correspond to the file name, version
number, culture, and public key. In another embodiment, the
strong name may be a hash of the module signed private key.
In yet another embodiment, the strong name may be a public
key token.

[0038] For example, the following XML may represent
one strong name for the manifest 108.

<assemblyIdentity
version="1.0.0.0"
processorArchitecture=“x86”
name=“SampleApp”
publicKeyToken=“0123456789%abcdef”
type="typeA”/>

[0039] The following is a sample trust information section
of one embodiment of the manifest 108.

<trustInfo>
<security>
<requestedPrivileges>
<requestedExecutionlevel
leastPrivileged="true”
adminPrivileged=“true”
requireDefaultDesktop="“false”/>
</requestedPrivileges>
</security>
</trustInfo>

[0040] For applications that do not have the manifest 108,
the operating system 102 may be configured to generate the

Apr. 28, 2005

manifest 108 with requested privileges set according to a
predefined default. For example, the manifest 108 may be
configured to request the least privileged level of user
access.

[0041] Alternatively or in addition, the operating system
may also observe the actions of an application and custom-
ize a manifest to provide only the privileges that the appli-
cation actually uses. After a number of executions of the
application, the manifest is locked and explicit user input or
administrator policy is required to extend the privileges
granted by the manifest. In some embodiments, the likeli-
hood that a vulnerable application will be compromised
soon after installation is relatively low compared to the
possibility that the application will be compromised later. If
the application is compromised after the manifest is locked,
the behavior of the compromised application is limited to the
behaviors allowed by the manifest, which were determined
by the uncompromised behavior of the application.

[0042] Methods for protecting resources using application
identities are next described.

[0043] Providing Access Control

[0044] Referring next to FIG. 2, an exemplary flow chart
illustrates operation of an access control method. In one
embodiment, the invention grants an application program
access to a resource on a computing system. The method
includes receiving a request from an application program for
access to a resource identified in the request at 202, deter-
mining an application identifier for the application program
at 204, identifying a privilege from a manifest (e.g., the
operating system manifest and/or the application program
manifest) as a function of the determined application iden-
tifier and the identified resource at 206, and granting the
application program access to the identified resource accord-
ing to the identified privilege at 208. In one embodiment,
determining the application identifier for the application
program at 204 includes tagging every file, folder, system
setting change (e.g., registry key and value) or resource with
a unique, consistent, persistent, repeatable identifier.

[0045] In one embodiment, an operating system executes
the method illustrated in FIG. 2. In another embodiment, an
application program or service separate from the operating
system executes the method illustrated in FIG. 2. One or
more computer-readable media have computer-executable
instructions for performing the method illustrated in FIG. 2.

[0046] Various exemplary privileges or other forms of
access are next described with reference to a sample miti-
gation architecture for protecting resources.

[0047] Exemplary Mitigation Architecture

[0048] Referring next to FIG. 3, an exemplary flow chart
illustrates a mitigation architecture for protecting various
resources. In one embodiment, the method illustrated in
FIG. 3 enforces the resource privileges described in the
manifest based on the application identifier of the applica-
tion program attempting to access the resources. While
certain privileges are described herein, various privileges,
levels of privilege, or access not described herein are within
the scope of the invention. Likewise, while certain resources
are described herein, the various resources not described
herein are within the scope of the invention.



