US 2005/0091658 Al

422. If the system setting operation will have an impact on
the system setting, the operating system performs a miti-
gated system setting operation at 420 according to a miti-
gation strategy such as illustrated in FIG. 3. The change to
the system setting, if any, is recorded in a log at 415.

[0059] If the operation represents a request to load an
extension to the operating system at 424, the operating
system determines if the application program (e.g., XXXX-
.exe) desires protection (e.g., to enable an “undo™) at 426.
For example, the application program may explicitly inform
the operating system of a desire for protection. If the
application program does not want protection, the operating
system allows the extension to load at 428. If the application
program indicates that protection is desired, the operating
system determines if the extension is a foreign extension
(e.g., supplied by a third party) at 430. If the extension is not
foreign, the operating system allows the extension to load at
428. If the extension is foreign, the operating system per-
forms a mitigated extension load at 432 according to a
mitigation strategy such as illustrated in FIG. 3. The exten-
sion load may be recorded in a log. For example, the
recording may be configurable by a user of the computing
system executing the operating system.

[0060] With virtualization, an application creates and
modifies objects in their own local namespace, while the
operating system creates and modifies objects in the global
namespace. There is one global namespace, and potentially
multiple local namespaces. For create operations, the appli-
cation creates the object in its local namespace. When an
application attempts to modify an object, the operating
system checks if the object resides in the local namespace
for the application. If the local object exists, the application
opens the object in its local namespace. If the application
attempts to modify an object in the global namespace, the
operating system copies the object into the application’s
local namespace and allows the operation to occur on that
local object. If the resource does not exist in the local or
global namespace, the open operation fails.

[0061] Referring next to FIG. 5, an exemplary flow chart
illustrates operation of a method of providing access control
for system settings. Even though FIG. 5 illustrates an
example related to system settings, the virtualization aspect
of the invention may be utilized for other objects (e.g.,
named objects) and namespaces. In FIG. 5, an embodiment
of the invention such as an operating system analyzes an
operation on a system setting requested by, for example, an
application program. In particular, the operating system
determines if the requested operation will write or delete a
system setting at 502. If the requested operation will not
write or delete a system setting (e.g., read-only access is
requested), the operating system determines if a virtual copy
of the system setting currently exists at 504. If a virtual copy
exists, the operating system identifies the virtual copy at 506
and performs the requested operation on the virtual copy of
the system setting at 508. If a virtual copy does not exist, the
operating system performs the requested operation on the
system setting at 508.

[0062] If the requested operation will write or delete a
system setting, the operating system determines if the
requesting application program is associated with a read-
only key (e.g., the requesting application program is not a
trusted installer) at 510. If the requesting application pro-

Apr. 28, 2005

gram is associated with read-only access (e.g., via an access
control list maintained by the operating system), the oper-
ating system will fail or deny the requested operation at 512.
If the requesting application program is not associated with
a read-only access, the operating system determines if the
requested operation will write or delete a system-restricted
setting at 514. If the requested operation will write or delete
a system restricted setting, the operating system determines
if the requesting application program is approved to perform
the operation at 516. For example, the operating system may
determine if the requesting application program has admin-
istrator privileges on the computing system. If the requesting
application program is approved to perform the operation,
the operating system will perform the requested operation at
508. If the requesting application program is not approved to
perform the operation, the operating system will fail or deny
the requested operation at 512.

[0063] If the requested operation will not write or delete a
system restricted setting, the operating system determines if
the requested operation is for a protected setting (e.g., a copy
of a system setting associated with the requesting applica-
tion program) at 518. If the operating system determines that
the requested operation is for a protected setting, the oper-
ating system virtualizes the protected setting by the appli-
cation identifier of the requesting application program at
520. That is, the operating system identifies the virtual copy
of the system setting and performs the requested operation
on the identified, virtual copy of the system setting at 508.
If the operating system determines that the requested opera-
tion is not for a protected setting, the operating system
determines if the requested operation is for a private setting
(e.g., a system setting associated with the requesting appli-
cation program) at 522. If the operating system determines
that the requested operation is for a private setting, the
operating system performs the requested operation on the
private system setting at 508. If the operating system deter-
mines that the requested operation is not for a private setting,
the operating system ends processing and fails the request
silently or explicitly.

[0064] When the application attempts to delete an object
from the local namespace and a global object with the same
name exists, the system marks the local object as deleted but
leaves that object in the namespace. Thus, the system is able
to detect that the application’s queries for that object should
not see that object’s name. When the application attempts to
delete an object that exists in the local namespace but not the
global namespace, the system deletes the local object.
Depending on the operating system configuration, deleting a
global object may result in deleting all the corresponding
local objects. The system may allow the application to
designate whether their corresponding objects should get
deleted in this manner, and the resource provider stores that
designation on the local object. Also, adding a global object
may result in deleting all the corresponding objects marked
as deleted from all local namespaces.

[0065] With this design, the application thinks that it is
working in the global namespace, but in reality, it works in
its own namespace. The system handles full path queries,
enumerations, and other operations to make the application
think that it is working in the global namespace. For
example, namespace enumeration includes listing all files
under a particular directory. The system queries all the
objects in the specified namespace (e.g., starting first with



