US 2005/0091658 Al

the local namespace, then the global namespace). The sys-
tem ignores duplicated objects with the global namespace
enumeration found in the local namespace. Enumeration
also ignores the objects marked as deleted from the local
namespace and its corresponding global namespace object.

[0066] For applications that expect to share resources, the
operating system may place the applications in the same
virtualization application group (e.g., same isolation iden-
tity). Alternatively, the operating system may specify that a
particular part of the namespace should not be virtualized. In
yet another alternative, the applications specify a portion of
their virtualized namespace that other applications may
access. The client application specifies the applications for
which access is desired. When the client application
accesses a shared virtualized namespace, the operating sys-
tem searches the corresponding exported namespace of the
target applications.

[0067] In some environments, the operating system may
want to have multiple virtualization layers. There might be
a virtualization layer per user and virtualization layer per
application group. Various ordering of the multiple virtual-
ization layers are within the scope of this invention. In this
example, the user virtualization layer takes precedence over
the application virtualization layer. Therefore, query
requests and open requests for an object first check the
current user’s virtualization layers, then the current appli-
cation group’s virtualization layer, and finally the global
namespace. The operating system returns the first object
found or no object if the object does not exist in any of the
virtualization layers or global namespace. Likewise for write
operations, the operating system first opens the object. If the
object exists in the highest precedence layer, then the write
operation occurs on that object. If the object does not exist
in the highest precedence layer, then the object gets copied
into the highest precedence layer and the write operation
occurs on the copied object. Create operations occur at the
highest precedence layer, though operating systems in some
embodiments may allow code to specify a particular virtu-
alization layer as a preference.

[0068] Similarly, when deleting an object, the operation
occurs at the highest precedence virtualization layer, though
operating systems in some embodiments may allow code to
specify a particular virtualization layer as a preference. Once
the exact object is found, the operating system checks if the
object exists in any applicable lower precedence namespace.
If the object does exist in a lower precedence namespace, the
intended delete object is mark as “deleted” and stays in its
namespace. If the object does not exist in a lower precedence
namespace, the object is deleted and removed from that
namespace. In some configurations, the operating system
may delete corresponding object from higher precedence
namespaces. The creator of the higher precedence object,
however, may designate the object to not be deleted in that
case.

[0069] When adding an object to a lower precedence
namespace, the operating system removes all corresponding
objects marked as deleted from the higher precedence
namespaces. The search and removal starts from the target
namespace up to the next applicable higher precedence layer
until the search finds a corresponding object that is not
marked as deleted or has searched all the applicable layers.

[0070] Enumeration operations account for all the appli-
cable virtualization layers for the context and global

Apr. 28, 2005

namespace. The enumeration starts from the highest prece-
dence applicable namespace and moves down to the global
namespace. As the enumeration encounters an object
marked as deleted, the enumeration for that object is ignored
in lower precedence namespaces. The enumeration also
ignores corresponding objects found previously in higher
precedence namespaces.

[0071]
tem

Internal Object Protection for the Operating Sys-

[0072] The operating system creates various objects.
Some of the objects are intended for access by applications
and others (e.g., internal objects) are only accessible by
operating system components. The operating system defines
the access rights (e.g., open and read access) for the objects.

[0073] In one embodiment, internal operating system
objects should only be accessible by internal operating
system components. To prevent external code from access-
ing the internal objects, the operating system marks the
internal object for access only by internal operating system
components. The runtime objects, running as internal oper-
ating system code, get associated with the internal operating
system identity. Therefore, when a runtime object attempts
to access an internal object, the operating system checks if
the runtime object is associated with the internal operating
system identity. If the runtime object has the internal oper-
ating system identity, the operating system allows the
access. Otherwise, the operating system implements appro-
priate action. Appropriate action may include rejecting the
access, logging the access attempt, etc.

[0074] When an internal operating system component
creates an object, the object is marked for access only by
internal operating system components unless the creator
specifically marks the object as available for external access.
The operating system may mark internal objects offline
using resource information from a store, manifest, configu-
ration file, digital signature, etc.

[0075] Some operating system components are classified
as middleware components, which means that even though
they are part of the operating system, they should not access
internal objects except for some special expectations that
external applications are also allowed to access. The oper-
ating system in one embodiment would like the middleware
components to stop using the special exception internal
object and migrate over to external objects. To address this
issue, the operating system associates a middleware appli-
cation identity with the middleware components. The spe-
cial exception internal objects are marked additionally with
the deprecated attribute. When a middleware component
accesses the deprecated object, the system responds with the
appropriate action such as audit the access and/or block the
access. The middleware deprecated resource detection may
be applied more generally for deprecating external objects or
other external objects or other internal objects.

[0076] Removal of Application Programs

[0077] Referring next to FIG. 6, an exemplary flow chart
illustrates a method for performing an application undo
using application identity information. In particular, the flow
chart illustrates a method of completely removing an
installed application program from a computing system via
an application identifier associated with the application
program and components (e.g., files and resources) thereof.



