US 2005/0165859 Al

(properties), but it is readily appreciated that alternative
methods of representing the content, for example through
pointers or other mechanisms, are also within the scope of
the present invention. The interpretation and use of the
<name,value> pairs (or other content identifier) is left to
client applications. A GSO may have multiple <name,value>
pairs with the same general name, thus defining an ‘activity
list” for the name. For example, a given GSO having a name
of ‘Design’ could include a <name, value> pair defining a
document to be modified and a <name,value> pair defining
a chat session. Members in the access control list of ‘Design’
can simultaneously access the document and chat session to
synchronously collaborate on the design. The value field is
typically a text field but could optionally also support
different data types, e.g. Integer, Boolean etc. In particular,
a GSO supports binary content, i.e. the value field could be
a large binary object. In general, the value field could
support types similar to relational database systems.

[0031] Advantageously, associated with each variable
property (activity, or item of information) is an access
history. The access history may be used to track the mem-
ber’s access to the individual data item, or activity. In one
embodiment, the access history may be used for security
purposes, to ensure that unauthorized members have not
somehow gained access to the variable property associated
with the object. In other embodiments, the access history
could be used to verify that a member stores the most up to
date version of an item of information. In other embodi-
ments, the access list could be used as input to programs that
seek to identify member interest in certain items of infor-
mation. The access history could take a variety of forms,
including an ordered list of members having recent access,
the types of the most recent access (modification or simply
reading), etc. It should be noted that the inclusion of the
access history is not a requirement, but rather a feature, of
the present invention.

[0032] The access list in the general properties of the GSO
manages a list of members having access to the object. The
member list may include member objects or group objects.
The member list both controls access and serves as a
distribution list for broadcasting notifications about creation
of and modifications to a GSO. The member list is dynamic
and allows adding new members or removing existing
members. Since the member list is also a property of the
GSO, any modification to the member list is not only stored
but also broadcast to the other members of a GSO. As
mentioned above, one of the general properties included in
a GSO is member status information. The member status
information may be used to control access to the variable
properties by the members. Thus, different membershaving
different roles may access objects in different manners. For
example, some members may have modify access, whereas
some may only have read access. In addition, some members
may have no access to particular variable properties in the
activity list of the associated with the object.

[0033] An important aspect of the present invention is that
the server process supports more complex collaboration
through the aggregation of GSOs into hierarchies, graphs, or
other structures. Thus, GSOs can have arbitrary pointers to
other GSOs. Each GSO within such a structure can have
different membership. This approach allows for fine-grained
access control to the data. Additionally, the server process
may provide convenience functions to help manage the

Jul. 28, 2005

membership within these structures; e.g. when adding to or
removing members from a single GSO, the server might
provide options to propagate this operation to related GSOs.
Likewise, when adding a new GSO to an existing GSO, the
server may support conventions such as: aggregating the
member lists of both GSOs, inheriting the member list of the
existing GSO, or allowing the member list of the new GSO
to prevail.

[0034] In one embodiment, a relationship data base is
provided to track the relationships. This allows, for example,
aggregating GSOs into hierarchies, graphs, or other struc-
tures required by more complex clients. For example, refer-
ring now to FIG. 3, a diagram is provided for illustrating a
number of different relationship structures that may exist
between GSOs. GSOs 60, 62 and 64 are hierarchically
related. Thus, modifications to GSO 60 could be propagated
to any object downwards in the hierarchy. A group of GSOs
is shown having a variety of relational interconnections. In
one embodiment, the relational database stores, for each
object, a pointer to one or more other objects that are
interested in changes to any attribute of a given object. When
the given object is modified, each interested object is noti-
fied of the change to the object. The relational database may
be organized in numerous manners known to those of skill
in the art, and the exact structure of the database is not a
limitation of the invention. Rather, any database that assists
in identifying related objects may be substituted herein.

[0035] Referring now to FIG. 4, a state diagram is pro-
vided for illustrating the operation of a client that interfaces
with the collaboration server of the present invention. The
functionality represented by the state diagram may be imple-
mented in the client API. The states include an Idle state 40,
a Request state 42 and an Update Object state 44. When the
client desires to modify a GSO, it forwards a Request
package to the server. The Request package generally
includes a request function and request content. Request
functions include but are not limited to creating, deleting,
reading, modifying or adding a property to the object. The
request content identifies the attribute of the data structure
seeking modification/creation/deletion and the desired con-
tent of the attribute. For example, the request function could
be to add or remove a member from a list of members. Or
the client may seek to add a variable property, and include
the name of the property and the desired value of the

property.

[0036] Once the request is forwarded to the server, the
client transitions to Request state 42, where it remains until
a response is received from the server, or alternatively until
a predetermined time period expires. The timeout may
expire as a result of the response being dropped somewhere
between the client and server, or alternatively as a result of
the client not being authorized to modify the object. In the
event of a Timeout, the state transitions back to Idle. In the
event that a Response package is received from the server,
the state transitions to Update Object state 44. The system
may be implemented in a variety of manners. The Response
package could simply indicate to the client that the Response
is granted, indicating that the client should update the Object
with the desired value that it has stored. Alternatively, the
Response package could include the modified value, with
the client always updating the object with the value of the
object received from the Server. Either way, when the object
is updated, the state returns to Idle state.



