US 2005/0165859 Al

[0037] As aforementioned, each GSO also constitutes a
persistent, real-time conferencing session between the mem-
bers of the GSO who are connected to the server. Hence, any
modification to the set of fixed properties or the set of
variable properties of a GSO is not only stored in the
underlying database but also automatically broadcast to the
other members of that GSO by sending notifications to the
clients currently connected. The receipt of a Notification at
the client causes the client to transition from Idle state 40 to
Update Object state 44, where the contents of the object data
structure are updated, and the state returns to Idle.

[0038] The server process not only sends notifications
about modifications to GSOs but also broadcasts the creation
of new GSOs and the deletion of existing GSOs. The default
behavior could be that any modification to a GSO is broad-
cast. Alternatively, a subscription object, associated with
each client or each client/GSO pair, could be used control
the amount of notifications send out by the server process.
With such an arrangement, clients can subscribe or unsub-
scribe to properties they are interested in hearing about.

[0039] Referring now to FIG. 5, a flow diagram is pro-
vided illustrating several exemplary steps that may be taken
at the collaboration server of the invention to control broad-
cast of generic shared objects for conferencing and content
management purposes. At step 50, the server receives a
request for creating/modification/deletion/addition of a
property of a GSO. At step 52, the server determines whether
the client is authorized to perform the activity on the GSO.
This determination is made by comparing the client against
the access control list for the GSO. If the client is unautho-
rized, then in one embodiment the server merely drops the
request at step 51. Alternatively the server could respond
with a negative acknowledgement (NACK) or some indica-
tion to the client that the request is not granted. If, however,
the client is authorized, then at step 54 the server executes
the request on the object, and at step 56 forwards a Response
package to the requesting client. As mentioned above, the
Response package may include a copy of the modified
object, or may simply include a message to the client that the
modification is accepted. At step 58 the server sends a
Notification package to each client on the access control list
of the GSO (if connected) to inform the members of the
modification.

[0040] In case modifications are propagated to related
GSOs, at step 59, the server searches the relationship
database at step 60 to identify related GSOs and the corre-
sponding clients that are interested in changes to the modi-
fied GSO. At step 62, the server forwards the modifications
to the identified interested clients. The server may accumu-
late the modifications, only sending them out at the desired
subscription times of the client. Alternatively, the server may
send them to the client at predefined time intervals (so as not
to overload the network). Also, the server may send out
modifications only to clients that are subscribed to certain
types of modifications. In addition, some modifications may
be prioritized so that they are immediately forwarded to the
clients. Thus, various techniques of controlling transmission
of the modifications to the clients may be used, and the
present invention is not limited to any particular technique.

[0041] Although the above embodiment has described the
object server as functioning on a dedicated device, this is not
a requirement of the invention. Rather, the Generic Server

Jul. 28, 2005

functionality may be implemented on any device, whether it
is a client or a server. For example, referring now to FIG. 6,
an example is provided of the support of GSOs in a
peer-to-peer networked environment. In the peer-to-peer
embodiment, each client runs an instance of the collabora-
tion server and the collaboration servers talk to each other to
broadcast modifications. For example, two clients, 112 and
212 each include functionality previously described on the
GSO server. For example, client 124 includes navigation
logic and relation database 124, access control logic 126 and
database 118. Where only two client devices are coupled, it
may be that the navigation logic and relation database
format are simplified, indicating whether or not the partner
client has access to the object or not. However, for systems
wherein three or more clients communicate peer-to-peer, the
logic is substantially similar to that previously described.
Each client would have an network interface that integrates
the broadcast functionality, described with regard to FIG. 5,
with the API of FIG. 4. Thus, whenever one client seeks to
modify an object, it notifies the other clients of the modi-
fication, and awaits receipt from the other client that the
request has been processed at the peer device.

[0042] An example of how Generic Shared Objects
(GSOs) may be managed by a GSO server of the present
invention to seamlessly provide synchronous, real-time col-
laboration and asynchronous collaboration between multiple
users will now be described with reference to FIG. 7. Bob
is a project lead and he works with Dan on a project on
“Casual Displays”. Catherine is a web designer in their
company who is responsible for the external web site. At 81,
Bob receives an email from Catherine containing a draft for
a project description that she would like to put on their
external web site. She wants some feedback from Bob.
Before getting back to her, Bob wants to discuss the design
of that web page with Dan. Instead of forwarding the
message to Dan via email, Bob decides to start a new activity
by creating a shared object based on this message. He
right-clicks on the original message in his inbox, selects
“share”, enters Dan’s email address, and hits “Share”. At 82,
a new shared message object (with Bob and Dan as mem-
bers) shows up in Bob’s activity tree in the right window
pane (screen A). Bob right-clicks on the shared object and
adds a new shared message to the initial one, because he
wants to let Dan know that he would like to discuss this with
him. At 83, Bob’s message shows up as a reply to the initial
message similarly to a newsgroup thread.

[0043] A few hours later, Dan returns to his desktop,
which is running the client, and notices Bob’s newly created
shared messages. He opens one message and while he is
reading it, at 84 Bob sees that Dan is looking at the messages
because the shared object is lit green along with Dan’s name
underneath the object. Bob takes this as an opportunity to
begin a discussion with Dan within the context of the shared
object. He right-clicks on the initial message and adds a chat
object to this activity at 85. A chat window D pops up on
Dan’s desktop and they chat. In their chat conversation, Bob
and Dan continue talking about the web page over the
phone. At some point during the discussion, Bob wants to
show directly how to change the web page. He right-clicks
on the chat object in his activity tree and adds a shared
screen object (86). A transparent window allows Bob to
select and “screen scrape” any region on his desktop. He
freezes the transparent window over Catherine’s draft web
page. The screen shot pops up on Dan’s desktop. Bob and



