US 2005/0104860 A1l

rithms use this redundancy to determine whether a blocked
beam is permanently disabled due to a faulty LED 24.

[0068] If both IrDA receivers 42 associated with an acti-
vated LED 24 provide an output profile indicative of a
blocked light beam path, then the LED is likely faulty based
on the premise that only one of the two light beam paths
between an activated LED and its two associated IrDA
receivers should be blocked at a time. The distance between
the two associated IrDA receivers 42 and the assumption
that the touch event is far enough away from the activated
LED so as not to block both light beam paths support the
premise. Cases where the touch event is close enough to the
activated LED 24 to block both light beam paths are noted
by the firmware through the blockage of both light beam
paths of adjacent LEDs. If the LED appears to be perma-
nently disabled, it is possible to report the error but still
continue near-normal operation with the remaining func-
tional LEDs.

[0069] System Operation
[0070] Power-On Self-Test (POST)

[0071] Upon reset of the touchframe system, the touch-
frame firmware does some basic housekeeping by setting up
the stack pointer to point to the end of the SRAM. It then
clears the SRAM to make it easier to examine stack behavior
in case of debugging.

[0072] Power-On Self Test then begins by forming a
register “bucket brigade”, shifting a couple of known pat-
terns from register to register and verifying that the registers
are able to store and recall the patterns correctly. Next, a
CRC test is performed on the FLASH memory. CRC is a
special check-summing algorithm that is substantially better
than additive checksums at detecting errors in a long byte
sequence. Finally, an SRAM Nair test is performed to prove
the ability of the SRAM fabric to store and recall data
correctly.

[0073]

[0074] The next task for the touchframe firmware is to
initialize internal data structures in preparation for start of
operations. The largest data structure is an array of beam
state variables. With reference to FIG. 10, cach LED 24
forms two logical geometric light beams 54 because each
LED is detected by two IrDA receivers 42. It is possible, and
very likely, that one of the two receivers 42 may “see” the
beam from a particular LED 24 while the other receiver is
blocked. For example, beams from LEDs 3 and 4 are
blocked to the view of IrDA 1 but visible to the view of IrDA
2. Alogical LED beam 54 is defined by both the LED 24 and
the IrDA receiver 42.

Initialization

[0075] Next the touchframe firmware initializes the inter-
nal processor timer Y1 (FIG. 8) used to generate the
fundamental timed interrupt that regulates touchframe sys-
tem behavior. This timer is initialized to a period of 100us,
which means that as many as 800 processor instructions may
be executed during each timer “tick”.

[0076] The internal processor UART 48 is initialized to a
rate of 19.2 Kbaud. Various I/O ports are initialized to a
benign state, interrupts are unmasked and globally enabled,
and assorted variables are initialized. Finally, the built-in
processor watchdog is synchronized and enabled, and pro-
cessor execution enters its main operational loop.

May 19, 2005

[0077] Main Operational Loop

[0078] The main execution path for the touchframe system
is comprised of three major actions; 1) checking for and
responding to commands from the GUI CPU 22, 2) checking
for blocked beams in sets of pairs of overlapping triangles,
and 3) coordinate converting and averaging the results of
any blockage.

[0079] GUI Command Decoder

[0080] The touchframe system detects and responds to a
pre-defined set of commands that the GUI CPU 22 issues
asynchronously from time to time. For example, the GUI
CPU 22 may send the status requests to the touchframe
system at ten-second intervals. Upon receiving a status
request, the touchframe system gathers any error informa-
tion, e.g., beams blocked for more than an acceptable period
of time, and formats that information into a message to send
back to the GUI CPU 22.

[0081] Commands from the GUI CPU 22 to the PCBA 16
are single 8-bit characters. Responses from the PCBA 16 to
the GUI CPU 22 are composed of multiple 8-bit characters.
Each response begins with a response-type character, fol-
lowed by one or more data characters, and ends with a
termination character of OxFF. The PCBA 16 originates two
response types unsolicited by a GUI CPU 22 command.
These responses are Touch and Release events.

[0082] Touch Event: OxFE, 0xXX, 0xYY, OxFF
[0083] Release Event: OxFD, 0xXX, 0xYY, OxFF

[0084] where 0xXX represents the 8-bit X coordi-
nate of the touch and 0xYY represents the 8-bit Y
coordinate.

[0085] All other responses occur only when replying to a
command from the GUI CPU 22. For example, the GUI
CPU 22 may request an error report or touchframe system
firmware version information.

[0086] Error Report Command: 0x32—Response:
0xF8, OxNN, OxEE, . . . OxEE, OxFF

[0087] where OxNN is the number of errors being
reported, and OXEE . . . OXEE are the error codes
(if any). If there are no errors whatsoever, the
response is: OxF8, 0x00, OxFF.

[0088] Possible error codes are:

[0089] 0x01—FLASH checksum error detected.
[0090] 0x02—SRAM error detected.

[0091] 0x03—Processor error detected.

[0092] 0x04—Failed beam(s) detected.

[0093] 0x08—UART error detected.

[0094] 0x09—Serial overrun error detected.
[0095] 0xOA—Invalid Command received.]

[0096] Get Version Command: 0x34—Response:
0xF6, 0xNN, “04-076530-85-X-", “0000”, OxFF]

[0097] where OxNN is the number of versions
being reported (for backward compatibility—al-
ways 0x01), and X is a revision letter specifying
the version of the Touchframe firmware. The



