US 2004/0268361 Al

[0048] 1t is important to characterize the base similarities
and differences, as they exist for each device driver class, to
ensure the present invention can correctly function. It is not
truly desired to load and unload device drivers for system
hardware that is constantly present. It should be understood
that although this is not a preferred embodiment in terms of
programming ease, it is within the scope of the present
invention and may be required for specific reasons, such as
the restriction in licensing agreements for applications that
are delivered and run using the present invention.

[0049] On non-Microsoft platforms, device drivers are
typically handled very differently. Macintosh systems sup-
port both static and dynamic drivers, but they are all
installed and removed through the same method. Linking
with the Macintosh system folder will provide the necessary
support. For UNIX systems, device drivers most typically
require a modification to the running UNIX kernel, followed
by a reboot. This process can be very complex. In the
preferred embodiment, this process is automated; including
resetting the kernel once the application is complete. The
general parameters of the process are the same as that
described above for Windows applications, the actual pro-
cess steps of compilation and persons familiar with such
operating systems can carry out reboot.

[0050] Finally, those of skill in the art will understand that
it is desirable to be able to recover and remove drivers across
system failures. Whatever data or processes necessary to
retain system integrity are therefore a preferred embodiment
of the present invention. Those of skill in the art will also
appreciate that all types of device drivers might not be
conveniently or efficiently provided via the present inven-
tion, most particularly those associated with permanent
hardware attached devices.

[0051] Other Items

[0052] In the present invention, it is recognized that there
are several components of the invention, the behavior or
presence of which is different on alternate operating sys-
tems. These components include fonts, processes, environ-
ment variables, and others.

[0053] Some applications require fonts to be installed in
order to perform correctly. Any fonts required will be
specified in the Operating System Guard’s configuration file.
The Operating System Guard will enable these fonts prior to
running the application and if necessary remove them after-
wards. Most systems have a common area for storage of
fonts in addition to a process for registering them or making
the system aware of their presence, the Operating System
Guard will utilize these available methods.

[0054] On Windows, a font is copied to the
\WINDOWS\FONTS directory. This however does not
guarantee that the font is available to the running program.
In the preferred embodiment, if the program uses the Win-
dows API to access fonts, the font will need to be registered
with a Win32 API call such as CreateScalableFontResource/
AddFontResource. This will insert the font into the system
font table. Once complete, the Operating System Guard can
remove the font with another appropriate API call like
RemoveFontResource, then remove the file from the system.
As an alternate embodiment, the Operating System Guard
could hook the API functions as described in the virtual
registry method. In addition, the Operating System Guard
can use its File subsystem to avoid placing the actual font
file in the running system.

Dec. 30, 2004

[0055] On Macintosh, the process is extremely similar and
based on files in the Macintosh system folder and registra-
tion activation. On UNIX, however, the process is dependent
upon the application. Most typically, font resources are
added to the system as regular files resolved in the proper
location, so they can be accessed by name. With many Motif
systems, a font description needs to be placed into a font
resource file, which will allow the font to be resolved. The
Motif or X application can invoke the font either through the
resolution subsystem or by a direct call. Recently, many
Motif and CDE based systems utilize Adobe scalable post-
script fonts. These fonts need to managed through the Adobe
type management system. There are exceptions, however,
and as stated above, there are alternates to the Windows or
other operating system default font management systems.
The Adobe Type Manager provides some alternate interfaces
for this process, as do other third party type management
systems. In most cases it should be decided whether to
support the interface or ignore it. The purpose of Operating
System Guard is not to provide a universal layer for all these
systems, only to do so for the operating system’s own
subsystem.

[0056] Many applications require environment variables
to be set. This is most common on UNIX systems, but is also
heavily used by software, which was originally written on
UNIX and ported to the Windows operating systems. Appli-
cations on the Windows operating systems heavily rely on
the DOS PATH environment variable and often set their own
application specific entries. On the Windows 9x/Me envi-
ronments, there are many environment settings, which are
applicable as at its core is the DOS subsystem. If an
application requires the presence of specific variables, or
values to be set in existing environment variables, the
required environment variables will be specified in the
Operating System Guard’s configuration file. The Operating
System Guard will set these variables for the application’s
main process when it is launched. As applications do not
typically change environment settings as they operate, the
virtual environment will not trap these calls, nor will it
provide the full complement of functionality that the registry
and configuration subsystem does.

[0057] Recovery

[0058] In some cases shown in the previous sections,
actual modifications must be made to the operating system.
This is frequent with device drivers and fonts. In addition,
changes can be made to the virtual environment that need to
be persisted and available the next time an application is run.
It is required that the Operating System Guard system be
able to recover from changes to the system, removing the
change from the system at its earliest possible opportunity.
Alternately, if the system crashes during an application’s
execution, the Operating System Guard should track enough
information to remove any change to the system if it is
rebooted or otherwise, and should track the changes made to
the virtual environment. In the preferred embodiment, this is
implemented as a transaction log, but can in other embodi-
ments be done as some other similar component, which can
be read on system startup so that changes can be backed out.

[0059] Controlling Virtualization

[0060] An important aspect of the invention relates to
control of the many facets of virtualization which the
Operating System Guard is capable of. In the preferred



