US 2004/0268361 Al

APL. As explained below, system functions like Que-
ryRegEx and GetProfileString can be hooked so that each
time they are invoked, another function or application inter-
cepts the call. The Operating System Guard 100 of the
present invention will hook each appropriate API function to
service the request, if made by an application being actively
managed or if made by an application against a configura-
tion item being actively managed. In this way, unless explic-
itly configured to do so, the present invention can create the
application environment without making any actual changes
to the end-user’s system. Also, any modifications made at
run-time by the application can be persisted or removed
easily.

[0014] As used herein the term “Operating System Guard”
defines a layer between a running application and the
operating system of a target computer or client computer that
provides a virtual environment in which an application may
run. This virtual environment has several purposes. First, it
prevents a running application from making changes to the
client computer. If an application attempts to change under-
lying operating system settings of a client computer, such
settings are protected and only “made” in the virtual envi-
ronment. For example, if an application attempts to change
the version of a shared object like MSVCRT.DLL, this
change is localized to the application and the code resident
on the client computer is left untouched.

[0015] Second, the invention presents an environment to a
running application that appears to be an installation envi-
ronment without performing an installation, and is thus a
“pseudo installation” or installation-like.” All of the settings
are brought into a virtual environment at the time the
application being served runs, or just-in-time when the
application needs the particular setting. For example, if a
computer program such as Adobe Photoshop® expects to
see a set of Windows Registry entries under
HKEY_LOCAL_MACHINE\Software\Adobe and they are
not there on the client computer since Photoshop was never
installed, a system made in accordance with this aspect of
the present invention will “show” those registry entries to
the Photoshop programming code exactly as if they were
resident on the client computer.

[0016] Next, the invention prevents information that may
exist on the client/users machine from interfering with or
modifying the behavior of an application. For example, if
the user has already existing registry entries under:

[0017]
HKEY_LOCAL_MACHINE\Software\Adobe

[0018] for an older version of Photoshop, but now wishes
to operate a newer version, these entries can be hidden from
the new application to prevent conflicts.

[0019] Finally, the present invention unlocks application
behavior that may not exist as the application is currently
written. It does this through the ability to dynamically
change the virtual environment according to administrative
settings. For example, in a typical instance of an enterprise
software application, a client application may expect to read
a setting for the address of the database to which the user
should connect from a setting in the registry. Because this
registry key is often stored in HKEY_LLOCAL_MACHINE,
the setting is global for the entire client computer. A user can
only connect to one database without reinstalling the client,

Dec. 30, 2004

or knowing how to modify this registry key, and doing so
each time they wish to run the application. However, by
implementing the present invention, two instances of the
application may now run on the same client computer, each
connecting to a different database.

[0020] Contexts

[0021] In providing this functionality, each application is
able to run in a private context within the system. To the
application, it has its own private view of what the system
looks like and its behavior. The present invention provides
this by its inherent nature. Referring to FIG. 2, two separate
applications 52,54, or two instances of the same application
(50 illustrated in FIG. 1), can be provided private contexts
in which they will appear to have separate or differing copies
of system services, configuration and data. In the preferred
embodiment, this is the default behavior of the system.

[0022] By extending this concept, the Operating System
Guard 100 of the present invention can also provide shared,
controlled contexts in which two or more applications 52,54
can share some or all of their virtual settings. This is
important for application suites such as Microsoft Office, or
for applications that perform differently in the presence of
other applications. For example, many applications use
Microsoft Word as an engine for doing Mail Merge or
document creation functionality. The application must know
about the installation or presence of Word and be able to tap
into its functions. In the preferred embodiment, two
instances of the same application will share a single context
by default, while two separate applications will maintain
private contexts. Referring to FIG. 3, the two applications
52,54 can run while the Operating System Guard 100
provides a shared view of the available system resources.

[0023] Design

[0024] As illustrated in FIG. 4, the Operating System
Guard is comprised of the following subsystems: core 102,
configuration manager 104, file manager 106, shared object
manager 108, device manager 110, font manager 112, pro-
cess manager 120, process environment manager 114, loader
116, and recovery manager 118. With the exception of the
core 102, the process manager 120, and the loader 116, all
other subsystems are elements of the Virtualization System
described in further detail below. The core 102 is primarily
responsible for managing applications and their context as
defined by the configuration files.

[0025] The process manager 120 provided by the Operat-
ing System Guard allows the core 102 to be informed of any
process or thread event that may be of interest. It also
provides an abstraction layer to the operating system-depen-
dent implementations for managing a process space and
handling thread processing. Processes may be grouped
together into application bundles. An application bundle is a
group of processes which all share their virtual resources
with each other. For example, Microsoft Word and Microsoft
Excel may want to share the virtual registry and virtual file
system to be able to work together as an application suite.
The process manager 120 calls these application bundles
“applications”. The information about an application exists
until the process manager 120 is told to release the appli-
cation. If another process needs to be loaded into the
application bundle, it may do so as long as the application
has not been released.



