US 2004/0268361 Al

[0026] The loader subsystem 116 of the present invention
is used to allow virtual environments to be transferred into
and out of the running system. Each of the Virtualization
Subsystems is capable of serializing its configuration for the
loader 116, and retrieving it through the reverse process. In
addition, the loader 116 is capable of staged loading/unload-
ing and combining the results of individual stages into one
single environment description.

[0027] Registry and Configuration

[0028] Applications require varying amounts of configu-
ration information to operate properly. Anywhere from zero
to thousands of configuration records exist for which an
application can read its configuration. On Windows, there
are two common places for configuration information, the
Windows Registry and system level initialization files
win.ini and system.ini. In addition, the
\WINDOWS\SYSTEM directory is a common place for
applications to write application specific configuration or
initialization files. Applications will also use configuration
or data files in their local application directories to store
additional configuration information. Often this information
is difficult to deal with, as it is in a proprietary format. On
platforms other than Windows, there is no equivalent of the
Registry, but common directories exist for configuration
information. X Windows has an app-defaults directory.
Macintosh has the System Folder, and other operating
systems will have corresponding elements. It is important to
note that on most UNIX systems, each individual applica-
tion 52,54 will most often store its own configuration
152,154 locally, as seen in FIG. 2.

[0029] The present invention, in one embodiment,
includes a virtual Windows Registry component, which will
provide a full function registry to an application, but prevent
modification to the underlying system registry. All keys that
an application expects to access will be present, but may
only exist in the virtual registry. In this way, the Operating
System Guard 100 of the present invention and the Windows
Registry form a two-stage process for accessing the registry.
If an application needs access to a key, it will query the
Registry. The Operating System Guard will respond with the
key and its value if it knows it. Otherwise, it will allow the
request to pass through to the Windows Registry. If an
attempt is made to modify the value, the Operating System
Guard will allow the modification to occur to itself only. The
next time the application accesses the key, it will be present
in the Operating System Guard and the request will not flow
through to the real Registry, leaving it untouched.

[0030] The keys that the Operating System Guard uses are
specified in three separate sections. These Operating System
Guard keys are specified as commands in these sections to
modify an existing key, delete the presence of a key, or add
anew key to the registry. In this way, the virtual registry can
appear exactly as the system intends. This is important as the
presence or absence of a key can be as important as the
actual value of the key.

[0031] Inthe preferred embodiment, the Operating System
Guard first loads a data file that contains basic registry
entries for the application. Then a second data file is loaded
that contains the user’s preferences. Finally, the Operating
System Guard can optionally load a set of keys that include
policy items that the user is not allowed to override. The
three files load on top of each other with duplicate items in

Dec. 30, 2004

each file overriding items in the file before it. The first time
a user runs an application, the second data file will not exist
because there will be no user-specific information, only
application defaults. After each session, though, the Oper-
ating System Guard will save the user’s changes, generating
that second data file for use in future sessions.

[0032] Configuration files can be modified in two ways.
First, the file can be edited directly by an application. In this
scenario, the Operating System Guard File subsystem
described below will address the modification made to the
file. Second, in the preferred embodiment, an application
can call the Windows API family of calls GetProfileString,
WriteProfileString, or others to modify these files. In this
case, the Operating System Guard of the present invention
performs exactly as described above intercepting these calls
and servicing them from within.

[0033] Shared Objects

[0034] Many components used by operating systems and
running applications are shared across several applications
or instances. In general, this is a very good idea. It saves disk
space, not requiring many copies of the same file. It also
provides the ability for operating system vendors and third
parties to create and distribute libraries of commonly used
code. On the Windows platform, Dynamic Link Libraries,
DLLs, are often shared within and across applications. On
other platforms, the problem is the same. On the Macintosh,
INITs and other system components are loaded for applica-
tions. These components can have many versions, of which
only one is used at a time. On UNIX systems, dynamic
shared objects, e.g., ”.s0” library files, are used by applica-
tions to speed load time, save disk space, and for other
reasons. Many programs use the default “libc. so.” However,
this library file is typically a symbolic link to some version
of itself such as libc.so.3. In practice, this feature has created
havoc. These shared components have often gone through
revision, with many versions of the same component avail-
able to be installed. Application authors have found their
software to work with potentially only one or some of the
versions of the shared component. Thus, in practice, appli-
cations typically install the version they desire, overwriting
other present versions. This potentially causes defaults in
other applications running on a system.

[0035] On Windows 98, Windows 2000, Microsoft has
created the Windows Protected File System (WPFS) to
allow system administrators to create a file called XXXX-
.LOCAL in the base directory of an application, where
XXXX is the executable file name without the extension.
This causes the Windows Loader to alter its method of
resolving path references during LoadLibrary executions.
This, however, is not sufficient to completely solve the
problem. First, setting up the XXXX file is left to the
knowledge of the system administrator, which varies widely.
Second, a component version must undergo a rewind back to
the original, then install this component in the local direc-
tory, and then create the ".LOCAL” file. This is not a
straightforward process for any but the most basic compo-
nents placed in WINDOWS\SYSTEM. Also, this solution
does not cover all of the needed functionality. During
LoadLibrary, Windows uses different path resolution seman-
tics depending on whether the component was resolved as a
result of an explicit or implicit LoadLibrary, and also
whether a Registry Key exists indicating that it is a named,



