US 2004/0268361 Al

or well-known, DLL. In this case, the LoadLibrary call will
always resolve to the WINDOWS\SYSTEM directory.

[0036] DLLs and other shared components also retain
reference count semantics to ensure that a component is not
touched unless no running applications refer to it. In prac-
tice, only applications from the operating system vendor and
the operating system itself have done a good job of obeying
this protocol.

[0037] As a general rule, it is desired to have a shared
object always resolve to the correct component. To provide
this functionality it is required to understand the version of
a component, or range of versions, that an application is able
to function with. Then, when the application is to be run, the
present invention should ensure that the component is
resolved correctly. It is acceptable, in the present invention,
to automate the use of WPES or other operating system
provided capability, if desired. In this case, it is necessary to
detect needed components and place them in the local file
system. This is more complex than just watching installa-
tion, as an installation program will often not install a
component if the required one is already there.

[0038] 1t is desired to identify a method to ensure that
named objects are also loaded correctly. On the Windows
platform, MSVCRT.DLL is a significant culprit within this
problem area. If multiple versions of this object are main-
tained, the aforementioned Registry key can be dynamically
changed, allowing the LoadLibrary function to resolve the
correct component version. Another reasonable method of
ensuring correct component loading is the dynamic editing
of a process environment to use a valid search path. This
search path will ensure that a local component is resolved
before a system wide component. Another possible method
for resolution of the correct shared object is through the use
of symbolic links. A symbolic link can be made for a shared
component, which is resolved at run-time by the computer’s
file system to the needed component. Finally, the actual
open/read/close requests for information from a shared
object’s file can be intercepted by the present invention and
responded to dynamically for the correct version of the file
which may exist on the local system or within the inven-
tion’s subsystems.

[0039] Several special forms exist. On the Windows plat-
form, OLE, ODBC, MDAC, . . . as well as a number of other
vendor specific components, are written to be shared glo-
bally among several or all running processes. In the case of
OLE, going as far as sharing data and memory space
between separate processes. OLE prevents more than one
copy of itself running at a time, as do many of these
components. OLE also has many bugs and features requiring
a specific version to be loaded for a specific application. In
the present invention, an application is able to load whatever
version of OLE is required, still enabling the shared seman-
tics with other components using the same version of OLE.

[0040] In general, unless specifically configured as such,
shared objects should be loaded privately to ensure conflict
prevention. Nothing about the method used to allow a
component to be loaded privately should prevent it from
being unloaded cleanly or correctly loading for another
software application, whether being actively managed by the
Operating System Guard or not. In addition, if the system
crashes it is required to recover from this crash to a clean
state, not having overwritten or modified the underlying
operating system.

Dec. 30, 2004

[0041] Files

[0042] Many applications use data files within the appli-
cation to store configuration entries or other application
data. The present invention provides a virtual file system
much like the virtual registry described above. Before the
application starts, the present invention can load a list of file
system changes, including files to hide and files to add to the
virtual environment or files to redirect to another within the
virtual environment. Whenever the application accesses or
modifies any files, the Operating System Guard checks if the
file must be redirected, and if so, in the preferred embodi-
ment redirects the request to a location specified in the
Operating System Guard configuration.

[0043] 1If an application tries to create a new file or open
an existing file for writing on a user’s local drive, the
Operating System Guard must ensure that the file is actually
created or modified in the redirected location. If the appli-
cation is reloaded at a later time, this file mapping must be
reloaded into the Operating System Guard virtual environ-
ment. When the request is to modify an existing file, which
resides on a user’s local drive, the Operating System Guard
must copy the file in question to the redirection point before
continuing with the request. The redirected files may not be
of the same name as the original file to ensure safe mapping
of file paths. In the preferred embodiment, INI files are
handled in this way to offer maximum system security while
allowing maximum application compatibility.

[0044] The present invention is particularly useful for
applications delivered over a network. In such implementa-
tions it is important to understand that software applications
are made of several kinds of data, where the bulk of the files
a software application uses are most preferably mounted on
a separate logical drive. Configuration, including both file
based and registry based, can be user specific and system
wide. The application delivery system used should mark
each file for which of these types any file is. This informa-
tion provides hints to the Operating System Guard system to
act on appropriately.

[0045] Device Drivers

[0046] Many applications use device drivers or other
operating system level software to implement some of its
functions such as hardware support or low level interactions
directly with the operating system. In the present invention,
the Operating System Guard will provide the capability of
dynamically, and as possible privately, adding and removing
these components to an application’s virtual environment.

[0047] Many device drivers are built to be dynamically
loadable. If at all possible, it is the preferred embodiment to
load all device drivers dynamically. If a device driver
requires static load at boot time, the user must be presented
with this knowledge before running the application. Once
the system has rebooted, the application should continue
from where it left off. However, a large percentage of device
drivers are not dynamically unloadable. Although it is pre-
ferred to dynamically unload the driver, if this cannot be
accomplished the driver will be marked for removal on the
next reboot, and the user should be made aware of this. If the
application is run a second time before the next reboot, the
system should remain aware of the presence of the driver
and not attempt a second installation, waiting for termina-
tion to remark the component removable at next reboot.



