US 2005/0005261 Al

by an implementation hold all instance data described by the
descriptor for that implementation.

[0054] For the purposes of the present invention, the term
“inheritance™ refers to the ability of one or more software
models to of the present invention extend a base model in
order to receive all the features and functionality of that
parent model while adding new features and functionality.
Models that inherit from a base model may also override
features inherited from the parent model to change func-
tionality or further restrict features. When common features
and functionality may be logically grouped, but for technical
reasons cannot be implemented in a parent model, an
interface may be appropriate. When models share a type,
either through a parent model or an interface, software
processes can use these models interchangeably.

[0055] For the purposes of the present invention, the term
“instance” refers to a single entity following the definition
given by an implementation. The instances created by an
implementation hold all instance data described by the
descriptor for that implementation. The instance has access
to the static data held by its implementation and can execute
operations through the mechanism provided by the imple-
mentation.

[0056] For the purposes of the present invention, the term
“interface™ refers to a set of operations that must be imple-
mented by a model in order for that model to participate in
the interface’s type for polymorphic functionality. An inter-
face defines operations that must be implemented by any
models that participate in that interface. Interfaces are a way
of communicating over the boundary between two or more
components. The components know how to communicate
with each other because they all understand the interface
used for this communication.

[0057] For the purposes of the present invention, the term
“layer” or “software layer” refers to an indirection consist-
ing of a plurality of components related to a specific task. An
example “security layer” might consist of several compo-
nents used to filter or restrict access to sensitive data. The
security layer serves as an indirection between the user and
the data.

[0058] For the purposes of the present invention, the term
“manager” refers to a mechanism for sharing components
between processes to improve scalability and centralize
configuration. Each manager is responsible for holding a
plurality of a single type of component. These components
can be reused thousands of times before shutdown and may
even be used by multiple users at the same time. Managers
associate a unique identity or name with each component for
easy retrieval.

[0059] For the purposes of the present invention, the term
“member” is a synonym for attribute.

[0060] For the purposes of the present invention, the term
“metadata” refers to data that describes other data.

[0061] For the purposes of the present invention, the term
“meta-implementation layer” refers to a software layer that
serves as an indirection between those entities that use an
implementation and the implementation itself. The meta-
implementation layer allows the actual implementation to be
changed or replaced with another implementation without
the need for the user of the meta-implementation to be aware

Jan. 6, 2005

of that change. A meta-implementation layer provides a
connection between a descriptor and the implementation of
that descriptor allowing users of the meta-implementation
layer a greater understanding of the implementation and its
design (the “why does it work this way”) while simulta-
neously buffering the user from the implementation specifics
(the “how exactly does it work to accomplish that task”).
There exists a one-to-one mapping between a descriptor’s
parts and the parts in the meta-implementation layer for that
descriptor.

[0062] For the purposes of the present invention, the term
“metamodel” refers to a description of a model and is
synonymous with the term “model descriptor”. A metamodel
may be used to describe any model. Since a metamodel is a
model that describes models, a metamodel may be con-
structed to describe another metamodel. A metamodel for a
model may include the structure, operations, and constraints
on the use of the model.

[0063] For the purposes of the present invention, the term
“model view controller” refers to a design pattern used to
separate data storage from business logic and display logic.
The model is the object that holds the data. The view is the
component that displays the data. The controller interprets
input from the view to determine what action to take. It is a
misconception to believe that the controller contains the
business logic. The controller could more accurately be
called the “input controller” since object-oriented program-
ming should correctly place related business logic in the
model.

[0064] For the purposes of the present invention, the term
“model” refers to a software definition containing enough
detail to be useful to a software application. A model does
not need to include every detail of a real object. A model of
the present invention may extend only one base model, but
may also implement zero to many interfaces.

[0065] For the purposes of the present invention, the term
“object oriented programming” refers to the customary
definition of the term object oriented programming ie. a
type of programming in which programmers define not only
the datatype of a data structure, but also the types of
operations (functions) that can be applied to the data struc-
ture. In this way, the data structure becomes a class that
includes both data and functions. In addition, programmers
can create relationships between one class and another. For
example, classes can inherit characteristics from other
classes.

[0066] For the purposes of the present invention, the term
“object” refers to a software representation that follows the
definition given by a model to represent one instance of that
class. For example, if a software metamodel describes a
blueprint for a “dog”, a class implements that blueprint, and
an object instance can be used to hold the information for a
specific dog named “Spot” with brown fur owned by “John”.
Generally, an object is any item that can be individually
selected and manipulated. This can include shapes and
pictures that appear on a display screen as well as less
tangible software entities. In object-oriented programming,
for example, an object is a self-contained entity that consists
of both data and procedures to manipulate the data.

or the purposes of the present invention, the term
0067] For the purp f the p i i hy
“package” refers to a logical grouping of related models that



