US 2005/0005261 Al

have different features and functionality. Models in the same
package cannot solely by virtual of being in the same
package be used interchangeably. Instead models in the
same package are models that are likely to be used together
while performing some functionality. A package does not
eliminate the possibility of models implementing polymor-
phic behavior; it simply does not endow that characteristic.

[0068] For the purposes of the present invention, the term
“polymorphism” refers to the ability of a software program
to use different implementations that share a common base
class or interface.

[0069] For the purposes of the present invention, the term
“primitive” refers to a basic type that has no base model
from which the basic type may of the present invention
extend. A primitive is data used in a software program that
is not an object and therefore has no class definition. A
primitive is a built in part of the language and is usually
simple. Primitives include Boolean, character, date, integer,
number, rootclassifier, rootinterface, time, and void. Bool-
ean types may only contain “true” or “false; no other values
are possible. Character types may contain a value represent-
ing a language character. Date types represent a day in the
current calendar. Integer types are whole numbers with no
fraction or decimal part. Number types may contain any
numeric value. Time types contain an indicator of a particu-
lar division within a date such as hours, minutes, and
seconds. The void type represents no type at all. Void is used
to indicate that no type is legal or that no object is returned
(from an operation). The RootClassifier type is used for base
models that do not of the present invention extend any other
previously defined model. The Rootlnterface type is used for
interfaces of the present invention that do not extend from
any previously defined interface.

[0070] For the purposes of the present invention, the term
“problem domain” refers to a problem or the subject matter
of interest and defines what details are included and what
details are eliminated during the process of abstraction of a
software definition.

[0071] For the purposes of the present invention, the term
“relationship” refers to a link or connector between models.

[0072] For the purposes of the present invention, the term
“resource” refers to an available reserve or supply of any-
thing that can be drawn on when needed. Components use
available resources to accomplish tasks. Resources are dif-
ferent from components in that they are not classifiers in the
component integration engine; rather the component inte-
gration engine uses them. Examples include hard drives,
network cards, memory, databases and files.

[0073] For the purposes of the present invention, the term
“service context” refers to a logical grouping of services
available for a particular group of users within a virtual host.
Service groups share the resources of that virtual host, but
each service context holds different services. While all users
in a virtual host have access to the shared resources, the
services available to make use of those resources is deter-
mined by the service context. In this way the “administra-
tion” service context might make services available to add
new services to service contexts, while the “marketing”
service context does not.

[0074] For the purposes of the present invention, the term
“service” refers to a task on a server performed on behalf of
a user. The type of task is determined by the service.

Jan. 6, 2005

[0075] For the purposes of the present invention, the term
“software definition” refers to a description of a software
program that includes sufficient detail to allow the software
to be implemented. Software definitions may take the form
of a plurality of textual descriptions, a plurality of diagrams,
a plurality of requirements, or a plurality of descriptors. A
software definition may include any combination of these of
these things. A software definition may capture diagrams
and textual descriptions as descriptors and may translate
descriptors to text descriptions and diagrams.

[0076] For the purposes of the present invention, the term
“thread of execution” or “thread” refers to the ability of a
computer to appear to be executing multiple programs or
parts of a program simultaneously. The computer rapidly
switches execution between threads, making it appear that
the threads are executing simultaneously. Computers with
more than one central processing unit may execute a thread
on each central processing unit simultaneously.

[0077] For the purposes of the present invention, the term
“type” refers to a category such as a base model, an
interface, a primitive, etc. Type is synonymous with “clas-
sifier”.

[0078] For the purposes of the present invention, the term
“virtual host” refers to a grouping of services and resources
made available for a particular group of users. It serves as a
logical separation when certain services and resources
should be available to one particular group of users, but not
another group.

[0079] For the purposes of the present invention, the term
“virtual implementation” refers to assemblies of meta-
implementations (including other virtual implementations
and accessors) that behave as an implementation for a
specific descriptor. A virtual implementation fulfills the
implementation for a specific descriptor. Rather than creat-
ing a “real” implementation layer using source code gen-
erators and mapping the meta-implementation to this layer,
a set of virtual implementations exist for each descriptor of
the present invention. There is a one-to-one relationship
between the virtual implementation and the descriptor for
the virtual implementation. Therefore, a virtual implemen-
tation is directly traceable to the descriptors describing it.
For example, a dog metamodel might describe two attributes
(owner and fur color) and one operation (bark). A virtual
implementation for this metamodel contains a VirtualMod-
ellmplementation (dog) assembled from two VirtualAt-
tributeImplementations and a VirtualOperationlmplementa-
tion and mapped back to the dog metamodel. The first
Virtual AttributeImplementation instance holds a string
value representing the owner’s name and mapped to the
owner descriptor in the metamodel. The second VirtualAt-
tributeImplementation instance holds a value of class
“color” and map to the fur color descriptor. The bark
operation is assembled from a VirtualDataType instance
holding the value “bark™ and a SystemPrintimplementation
to print the word “bark™ to the screen. In a similar manner,
any software implementation can be created out of a very
small set of virtual implementation instances without requir-
ing code compilation. However, since the virtual implemen-
tation classes are compiled, these virtual implementations
perform only slightly slower than a natively compiled imple-
mentation.

[0080] For the purposes of the present invention, the term
“computer system” refers to any type of computer system



