US 2005/0005261 Al

priate object. A factory may use the request to construct a
new object each time. A pool may return objects that it holds,
and accept the object back into the pool after it is no longer
in use by the process. The components available for selec-
tion can be configured to allow model substitution, object
substitution and functional substitution at run-time. By
creating side-effect free strategies, fewer models need to be
developed due to small differences in functionality.

[0092] In embodiments of the meta-implementation layer
and component integration engine of the present invention,
a set of persistence engines is responsible for managing
objects that describe common data structures (such as cus-
tomer, address, inventory, images, etc.). These persistence
engines are side effect free. Programs accessing data through
a persistence engine have no way of knowing what specific
object implementation will be retrieved from a manager,
only that it will fit the type of object requested to perform a
specific task. This decouples object connections, since
objects reference the persistence engines or managers to
access other objects rather than referencing these objects
directly. This indirection allows model substitution, object
substitution and data substitution to occur at run-time. Any
data for which metadata can be retrieved can be managed by
a persistence engine. By using persistence engines for data,
fewer models need to be developed due to small differences
in data structure.

[0093] The present invention also provides a method for
configuring and accessing any object or structured data in
the running computer environment using metadata. Objects
for retrieving metadata, called “customizers”, are managed
by the customizer manager. An appropriate customizer can
be configured for every structure (object or data format) in
the system. For any object for which a customizer has not
been setup, the system defaults to a customizer that uses
dynamic discovery techniques to retrieve metadata. The
ubiquitous metadata allows programs to always externalize
configuration, input data, and instructions, allowing pro-
grams to be extremely flexible and manageable.

[0094] A command architecture of the present invention
uses one or more commands which perform small tasks
working together to perform more complex tasks. Metadata
exists to describe input, instructions, and output. The meta-
data allows any metadata-aware component to use any
command without requiring it to understand different inter-
faces for each subject area. In this way any commands can
be combined together without requiring code to match
different interfaces for each new subject area. Any informa-
tion necessary for using a command is described by the
command’s metadata, and understanding of the subject area
is left to the programmer or computer program that
assembles the commands into a program. This singular way
of dealing with all commands eliminates the proliferation of
component integration code.

[0095] The component integration engine of the present
invention may use centralized managed resources. Managed
objects may be used without side effects to the managed
resources or to independent processes. Mechanisms exist
which can be used to protect the shared resources from
alteration after registration in the manager. Additionally,
shared resources are not allowed to change themselves or
any other shared resource except locally within the process
using the shared resource. Many processes can use a single

Jan. 6, 2005

shared resource and anything occurring within one process
will have absolutely no affect on any other process.

[0096] The centralized managers are themselves managed
by a single manager, the “ManagerManager”, which all
other components can access in order to list any manager
and any managed component. Managed objects are stored
by identity (which is not necessarily a string name as is
required by naming contexts), which allows components to
be found by any component that knows the identity. Man-
agers may also expose a query interface to allow compo-
nents to be discovered by characteristics of the component,
even when an identity is unknown. Managers may restrict
the type of component allowed to be registered or may allow
dynamic registration of components. The ManagerManager
allows dynamic registration of managers, which allows any
manager to be replaced by a different type of manager to
allow for different performance characteristic in the central-
ized management of resources. Examples include “local
in-memory manager”, “database managed manager”, and
“LDAP managed manager.”

[0097] Managers available on the network allow many
component integration engines to share a common set of
managed resources. Component integration engines can
share these same managed resources regardless of program-
ming language, operating system, database, file structure or
any other technical specification aside from common net-
work access. Metadata for component customization of all
objects and structured data in the running system may be
understood by humans or computers.

[0098] Compiled configuration objects, called “customiz-
ers”, are a managed resource. By selecting a different
customizer from the customizer manager, different mecha-
nisms can be employed to configure the same type of object.
This allows for dynamically changing the configuration
mechanism, but offers the speed of unchangeable, compiled
code. In other words, since the metadata and customizers are
part of the system, they are also customizable. A configu-
ration is not limited to attributes; configuration of an object
may involve calling specific constructors, setting attributes,
invoking methods and registering to receive specific events.
Data used in the configuration process is always external to
the source code, never compiled into the code. This allows
administrators to change the functionality of any component
at run-time or replace a specific component with a different
component at run-time, completely changing a system’s
performance characteristics. A developer can add or change
components in a running system to implement new func-
tionality or change existing functionality without recompil-
ing or even stopping the running system.

[0099] Metadata is not limited to the object-oriented struc-
ture but can be applied to any structured data. Object
metadata is a specific implementation related to accessing
object-oriented data structures composed of constructors,
data, and methods. Object metadata is specific implemen-
tation of metadata as applied to objects.

[0100] Metadata-aware objects can access hierarchical
data or relational data through the metadata as if it were an
object. Recognizing the larger pattern of metadata describ-
ing any structured data significantly expands the power of a
component integration engine by allowing transparent
access to non-object structured data as if it were an object.

[0101] Since metadata does not require objects or data to
implement a specific interface or naming convention, any



