US 2005/0005261 Al

neither composed of the ATM (as in an aggregation) nor a
specific version of the ATM (as in a specialization). The
customer briefly associates with the ATM to perform a
specific task, the deposit. An instance of the interaction
relationship begins at the beginning of the operation and
ends at the end of the operation. Process entities can be
useful to record the occurrence of this relationship. In this
case, a bank transaction model might contain attributes for
the customer identity, the ATM identity, the date, and the
dollar amount deposited. An instance of the bank transaction
holds an instance of the customer, and instance of the ATM,
a date value, and a dollar amount value. This data can then
be stored in a database to correctly update the customer’s
balance.

[0135] Metamodels, feature descriptors, and other descrip-
tors are descriptions that represent interfaces to be imple-
mented in a metamodeling tool. Metamodels describe how
a model should be implemented. Metamodels are a type of
descriptor. Metamodels are comprised of descriptions of
smaller parts. These smaller parts are also described using
descriptors. Not everything that can be described is a model
or part of a model. Descriptors can be used to describe these
items too.

[0136] A descriptor defines an implementation. The
descriptor contains descriptions of the features and func-
tionality allowed and required in an implementation. The
descriptors of the present invention are interfaces that must
be implemented to participate in the modeling tool. Different
modeling tools may implement the same descriptor interface
differently. Different modeling tools may create different
implementations based on the descriptors.

[0137] A class is an implementation specific to object-
oriented programming. All classes are implementations.

[0138] Inone embodiment, the present invention provides
a type of meta-implementation called an accessor. An acces-
sor is a meta-implementation containing the descriptor and
behaving as an implementation by delegating to a real
implementation. No metamodeling equivalent exists for an
accessor. A virtual implementation is a meta-implementation
containing the descriptor and behaving as an implementation
by assembling other implementations to create a larger or
more complex implementation. The most basic virtual
implementations correspond to the most basic parts of a
typical programming language: variables, loops, flow con-
trol, and method calls.

[0139] Each descriptor has a name and may have relation-
ships with the following elements as well: a display name,
a description, hint instances and role instances. A descriptor
has a one-to-one association relationship with a name that
provides a name for the mode. Any tool using the model uses
this name. The name may be a string or a more complex
object. A descriptor has zero or one association relationship
with a display name that provides a name to display to a user.
The display name may be presented to human users as a
more attractive alternative to the name. A descriptor has a
zero to one association relationship with a description that
provides details about the model for its correct use. A
description may be useful for human users and automated
documentation. A descriptor has a zero-to-many association
relationship with hint instances that are name-value pairings,
which add details to the metamodel that cannot adequately
be captured anywhere else. A descriptor has a zero-to-many

Jan. 6, 2005

association relationship with role instances that are each a
group of related hints found to be commonly occurring.

[0140] A metamodel describes a model, but does not
implement that model or know how to access the various
features of a specific model implementation. Each descriptor
also has no signals. No additional events are added by the
failure descriptor.

[0141] A failure descriptor of the present invention is a
descriptor and holds the identity of the descriptor that is the
type of error thrown from an operation when an error occurs.
Failure Descriptors describe the errors that may occur when
an operation is attempted. Failure descriptors do not model
the failure; a metamodel describes the failure. A failure
descriptor has no operations. In a failure descriptor, a
descriptor change event is fired whenever an attribute value
is added, changed or removed from the failure descriptor.

[0142] A constraint descriptor of the present invention is a
feature descriptor representing a check that results in a true
or false condition. If the condition is true, an activity can
continue. If false, a failure is thrown to stop the current
operation from occurring. A wide variety of constraints can
exist including maximum and minimum number of occur-
rences (occurrence constraint), maximum and minimum
values for an attribute (value constraint), possession of
security credentials (access constraint), and many more. The
constraint descriptor does not attempt to enforce a con-
straint, only to describe it. The name of the constraint may
describe what the constraint enforces. The name of each data
instance indicates the purpose of the value as it applies to a
particular constraint implementation. The values of each
data instance configure the conditions of the constraint
instance.

[0143] Tt isimportant to note that constraint descriptors are
mapped to a “constraint implementation” holding the model
implementation that actually implements that constraint.
The constraint description needs to be captured and is
mapped to a constraint implementation for consistency, but
the implementation of a constraint is a model just like any
other model in the system.

[0144] A constraint descriptor has a one-to-one associa-
tion relationship with a configuration that provides the
values for each attribute in the model descriptor necessary to
setup the constraint. A constraint descriptor describes a
constraint, but does not implement that constraint. Also, no
additional events are added by the constraint descriptor.

[0145] A feature descriptor of the present invention is a
descriptor held by another descriptor. Many of the descrip-
tors described below, such as attributes and methods are
feature descriptors. Every feature descriptor has several
common characteristics. A feature descriptor has a one-to-
one association or aggregation relationship with a parent, the
object holding the feature descriptor. A feature descriptor
also has a zero-to-many association relationship with access
constraint instances that are restrictions to prevent access to
the feature implementation unless the user holds certain
credentials. A feature descriptor describes an abstraction of
various other types useful for describing “features” of a
model. It does not perform any operations. Also, no addi-
tional events are added by a feature descriptor.

[0146] A datatype descriptor of the present invention is a
descriptor describing an item of data. A data descriptor may



