US 2005/0005261 Al

[0174] A package descriptor describes a package, but does
not implement that package. No additional events are added
by the package descriptor.

[0175] A version descriptor of the present invention is a
feature descriptor providing details about the number of
modifications that have been made to its parent. Versions
include a major release, minor release, build release, and
revision release. The first public release is frequently
referred to as 1.0.0.0. Very minor fixes increase the revision
release. Minor changes that involved changes to several
other models increase the build release and reset the revision
release to zero. Small but significant changes increase the
minor release and reset the build and revision release to zero.
Very large changes increase the major release and reset the
minor release, build release, and revision release to zero.
The values allowed in a version are not always numeric,
instead the allowed values are determined by the data
descriptors. A version descriptor includes a major release
attribute descriptor, a minor release attribute descriptor, a
build release attribute descriptor, and a revision release
attribute descriptor.

[0176] A version descriptor has a one-to-one association
relationship with a major release attribute descriptor that
provides details on the major release attribute. Generally, the
major release is a number and cannot be less than zero. A
version descriptor has a one-to-one association relationship
with a minor release attribute descriptor that provides details
on the minor release attribute. Generally, the minor release
is a number and cannot be less than zero. A version descrip-
tor has a one-to-one association relationship with a build
release attribute descriptor that provides details on the build
release attribute. Generally, the build release is a number and
cannot be less than zero. A version descriptor has a one-to-
one association relationship with a revision release attribute
descriptor that provides details on the revision release
attribute. Generally, the revision release is a number and
cannot be less than zero.

[0177] A version descriptor describes a version, but does
not implement that version. No additional events are added
by the version descriptor.

[0178] A hint descriptor of the present invention is a
descriptor that is a group of attributes adding details to a
descriptor that are not adequately be captured anywhere else.
Hint descriptors describe the implementation of specific
hints. A hint can be added to any descriptor. A hint can be
used to create a descriptor implementation which has not yet
been formally defined, or which is extremely domain spe-
cific. Hints can be useful to aid the user’s understanding of
the model or to store values used in the automatic generation
of implementations from the descriptor as described in more
detail below. Also notice that since hints are part of the
modeling process, no access constraints exist. The modeling
tool enforces access constraints.

[0179] A hint descriptor has a one-to-many aggregation
relationship with attribute descriptors that describe the
attributes hint instances hold. A hint descriptor describes a
hint, but does not implement that hint. No additional events
are added by the hint descriptor.

[0180] A role descriptor of the present invention is a
descriptor serving as a mechanism for adding many related
hints to a metamodel or feature descriptor in a logical

Jan. 6, 2005

grouping. Arole descriptor may have a relationship with hint
descriptors and role descriptors.

[0181] A role descriptor has a zero-to-many aggregation
relationship with hint descriptors that provide details about
the hints contained by the role. A role descriptor has a
zero-to-many aggregation relationship with other role
descriptors that allows for the inclusion of all the hints from
one or more other roles to participate as hints in this role.

[0182] A role descriptor describes a role, but does not
implement that role. No additional events are added by the
role descriptor.

[0183] Incase one of the above-described descriptors does
not fully meet the needs of the modeler, some implementa-
tions of modeling tools can include a meta-metarepository
feature. The meta-metarepository contains the descriptors
described above displayed as metamodels. The user of the
modeling tool can alter these models, or construct a new
model to create a new descriptor type. This type becomes
part of the ontology of the modeling tool and may be used
from that point on as if it were a native modeling descriptor.

[0184] By using metamodels to define models, different
implementations can be created using different software
languages. For example, a customer model may be imple-
mented as a C++, Visual Basic, or a Java class. The current
state of the industry relies heavily on hand coding to
implement a model from a metamodel. Some pioneering
companies use computer aided software engineering
(CASE) tools or Unified Modeling Language (UML) tools
to generate source code directly from the metamodel. This
source code may be a largely complete object-oriented
implementation of the model described in the metamodel.
The Object Management Group (OMG) has advanced the
goals of CASE by introducing a common metadata descrip-
tion language for writing metamodels in XML syntax. This
XML Metadata interface (XMI) language allows different
modeling and CASE tools to be used together to generate
source code. The OMG has also defined a Metadata Object
Facility (MOF) that defines a mapping process for object-
oriented programming models. This mapping process may
be used to translate a metamodel into another metamodel,
another view of the same metamodel, or source code.

[0185] The present invention provides a new concept not
covered by CASE tools, XMI, or the MOF. The new concept
is that of a direct access layer between the metamodel and
its implementation using a meta-implementation layer. This
layer allows general tools that understand metamodels to
access and manipulate the implementation of that model.
Tools can interact with one or more models to use and
integrate these models.

[0186] Unlike the MOF, the implementation of a meta-
model does not have to be object-oriented. Unlike CASE
and Executable UML, the implementation of a metamodel is
not the required to be the result of generating source code
and compiling the result. The implementation is not the
result of a long and complex mapping process to generate
this source code as required by MOF. Instead, a platform is
selected which contains one implementation for each of the
model descriptor types. There is a one-to-one relationship
between each model descriptor and each metamodel acces-
sor and the model descriptors and accessors are organized in
exactly the same way as the metamodels are organized.



