US 2005/0005261 Al

perform the precondition constraint checks and the access
constraint checks against a given instance, and a postcheck-
(instance) that performs the postcondition constraint checks
against a given instance.

[0218] A parameter event is fired with the results of the
precondition check. A second parameter event is fired with
the results of the postcondition check (if the operation is
successful enough to reach the post condition check).

[0219] A method accessor of the present invention is an
operation accessor and a feature accessor on a model acces-
sor. A method accessor has one-to-one association relation-
ship with an operation descriptor that is the operation
descriptor for which method accessor provides access to an
implementation. A method accessor has one-to-one associa-
tion relationship with a method implementation that is the
operation implementation that the method accessor uses to
perform the action. A method accessor has zero-to-many
association relationship with signal accessors that use the
signal implementations they describe to access the appro-
priate operations in the model implementation to register for
event notifications. Signal accessors also provide the mecha-
nism to remove interest in receiving notification for an
event. The instance registering interest in receiving event
notification must implement the appropriate interface to
match the listener type described in the signal descriptor. A
method accessor has zero-to-many association relationship
with precondition constraints that are each an implementa-
tion of a constraint to restrict some environmental condition
or state of the model implementation before the execution of
the operation. These types of constraints may check for the
installation of a security manager, the existence of a database
connection, or some other environmental condition. These
constraints may also check to see if a model implementation
has entered into the correct state to allow the execution of
this operation. Constraints related to the parameter values
are held by the parameter descriptors. A method accessor has
zero-to-many association relationship with postcondition
constraints that are each an implementation of constraints to
check for certain conditions at the end of the operation.
Similar to precondition constraints in checking for environ-
mental and model related assumptions.

[0220] A method accessor may include the following
operation: execute(ParameterList) that attempts to perform
the method by executing the method implementation. First
all access and precondition constraints are check for the
operation accessor and parameter accessors. Then the opera-
tion is attempted. If the operation implementation is suc-
cessful, the postcondition constraints are checked for the
operation accessor and parameter accessors.

[0221] A method accessor adds no additional events.

[0222] A signal accessor of the present invention is a
feature accessor that describes a notification and provides
the mechanism to register an appropriate instance’s interest
in receiving notification when the model generates an event.
A signal accessor also provides the mechanism to remove
interest in receiving notification for an event. The instance
registering interest in receiving event notification must
implement the appropriate interface to match the listener
type described in the signal descriptor. Note that signal
accessors do not require access constraints as the operations
accessors impose these constraints. Also note the existence
of the listener operation that was contained in the signal

Jan. 6, 2005

descriptor. The implementation places the burden of imple-
menting the listener operations on the listener. The signal
accessor can still contain the description of how to perform
those operations on a listener, rather than pushing these
operation descriptors to a model accessor.

[0223] A signal accessor has a one-to-one association
relationship with a signal descriptor that is the signal
descriptor for which this accessor provides access to an
implementation. A signal accessor has a one-to-one asso-
ciation relationship with a signal implementation that is the
signal implementation that this accessor uses to perform the
action. A signal accessor has a one-to-many aggregation
relationship with listener operation accessors that call upon
the operation implementation in the listener implementation.
A signal accessor has a one-to-many aggregation relation-
ship with registration operation accessors that call upon
operation implementations in a signal implementation.
These operations are usually operation implementations on
the model implementation without a composite “signal”
object held by the model. A signal accessor has a one-to-one
aggregation relationship with deregistration operation acces-
sors that call upon operation implementations in a signal
implementation. These operations are usually operation
implementations on the model implementation without a
composite “signal” instance held by the signal source model.
A signal accessor has a one-to-many aggregation relation-
ship with listener access operation accessors that call upon
operation implementations in the signal implementation.
These operations are usually operation implementations on
the model implementation without a composite “signal”
instance held by the listener model. A signal accessor has a
zero-to-many aggregation relationship with listener regis-
tration operation accessors that call upon the operation held
by the signal implementation to perform registration for
event notification. A signal accessor has a zero-to-many
aggregation relationship with listener deregistration opera-
tion accessors that call upon the operation held by the signal
implementation to remove an instance from registration for
event notification. A signal accessor has a zero-to-many
aggregation relationship with listener access operation
accessors that call upon the operation held by the signal
implementation to list all instances registered for event
notification. A signal accessor has a zero-to-many associa-
tion relationship with registration constraints that are each
an implementation of constraints to check for certain con-
ditions of the listener instances being registered. These
constraints may also be used to restrict the type and number
of listeners.

[0224] Asignal accessor may include the following opera-
tions: register(Instance) that attempts to register the given
instance as a listener (Registration constraints are applied to
the listener before performing the registration event), dereg-
ister(Instance) that attempts to remove the given instances
from listening to event notifications, and listListeners() that
returns an enumeration to the listeners currently listening for
events from this signal.

[0225] A registration event with the status of the registra-
tion constraints is fired to all interested parties after the
register(Instance) method performs all the precondition
tests. A second event is sent at the successful completion of
the registration operation. Events are also fired when dereg-
ister(Instance) and listListener() methods are called.

