US 2005/0005261 Al

instance. An attribute instance has a zero-to-many associa-
tion relationship with a data instance that is a holder for
instances of data that meet the constraints placed upon them.
An attribute instance has a zero-to-many association rela-
tionship with access signal instances that are the signal
instances holding listeners interested in hearing about
accesses to the attribute values. An attribute instance has a
zero-to-many association relationship with prechange signal
instances that are the signal instances holding listeners
interested in hearing about changes to the attribute values
before the change occurs. An attribute instance has a zero-
to-many association relationship with postchange signal
instances that are signal instances holding listeners inter-
ested in hearing about changes to the attribute values after
the change has occurred.

[0313] An attribute instance may include the following
operations: getValue() that returns the current value(s),
setValue(Instance) that removes any previous value and sets
it to the new value after checking all constraints, addVal-
ue(Instance) that add the instance given to the current values
after checking all constraints, removeValue(Instance) that
remove the given instance from the current values after
checking to see if the value is being held and checking
occurrence constraints, and clearValues() that remove all
values after checking occurrence constraints.

[0314] A data event is fired whenever a value is added,
changed, or removed.

[0315] An operation implementation is a difficult virtual
implementation to construct. For each language construct
(like branches, loops, comparisons, etc.), there must exist an
operation implementation. These operations are added
together in a sequence to construct the virtual operation.
This is similar to scripting inside an application, or writing
source code where one line is evaluated before the next, with
some lines of source code skipping or repeating other lines
of source code. Once these primary language elements exist,
a virtual operation implementation has all the power of a full
programming language. However, a virtual operation imple-
mentation still has the advantages of drag-and-drop assem-
bly (if the metamodel tool supports it) and certain aspect-
programming advantages from being “virtual.” Security and
logging can be added at runtime to a virtual operation
implementation, as can any other functionality modification.
New operations can be added to the language by creating a
new operation implementation. This is similar to but far
beyond operator overloading or standard template library
functionality in C++.

[0316] An operation implementation has a one-to-one
association with an operation descriptor that is the operation
descriptor for which the virtual operation implementation
provides access to an implementation. An operation imple-
mentation has a zero-to-many association relationship with
suboperations that are used to describe the operations that
will be executed by this operation in the order in which they
occur. An operation implementation has a zero-to-many
association relationship with parameter accessors that are
used by the operation implementation to impose occurrence,
value, and access constraints on the parameter values.

[0317] An operation implementation includes an
execute(ParameterList) operation that attempts to perform
the operation by executing the operation implementation.
First all access and precondition constraints are check for the

Jan. 6, 2005

operation implementation and parameter implementations.
Then the operation is attempted. If the operation implemen-
tation is successful, the postcondition constraints are
checked for the operation implementation and parameter
implementations.

[0318] An operation implementation adds no additional
events.

[0319] Examples of the use of an operation implementa-
tion sub-implementation for trapping failures are described
below.

[0320] A failure trap implementation of the present inven-
tion is an example of an operation implementation repre-
senting a try-catch block used by some programming lan-
guages (Visual Basic refers to these as onError blocks). A
failure trap implementation serves to capture any failures
that occur during execution. Failure descriptors signify
errors that must be handled in order for the software to
continue executing or errors that explain why execution has
been cancelled. In either case, a failure trap allows the
program to capture (or trap) a failure and perform an
operation to attempt logging or recovery from that error. The
finally operation is always executed at the end of the try
operation, whether a failure was thrown in the try operation
or not. The finally operation implementation is even guar-
anteed to execute even if a further failure is created in the
catch operation implementation that is not caught. It will
always be executed if the try operation is executed. Note:
precondition constraints can prevent the try operation from
executing. When preconditions prevent the try operation
from executing, the finally operation is not executed. This is
consistent with the statement made earlier: the finally opera-
tion will always be executed if the try operation is executed.

[0321] A failure trap implementation has a zero-to-many
association relationship with failures that are captured when
thrown. Failures may be thrown by an operation implemen-
tation, constructor implementation, destructor implementa-
tion, any constraint type, and by accessor operations. Failure
trap implementations capture these error notifications and
perform some action. This action may be corrective or may
simply record the event. A failure trap implementation has a
one-to-one association relationship with a try operation
implementation that is the operation to attempt. A failure
trap implementation has a zero-to-one association relation-
ship with a catch operation accessor that is the operation to
perform whenever a failure is received. A failure trap
implementation has a zero-to-one association relationship
with a finally operation accessor that is the operation to
perform whenever the try operation has been executed
whether the execution of the try operation was successful or
not.

[0322] A failure trap includes Execute(ParameterList)
operation that inherited from OperationImplementation.

[0323] Instances of failure trap implementation fire failure
events fired whenever a failure is trapped. These events can
be useful to ensure that a failure trap operation is correctly
handling failures. Corrective actions, assumed to always
succeed, that fail to perform can cause serious headaches to
debugging. These events allow rapid discovery of failed
corrective actions.

[0324] An operation instance of the present invention
represents an operation to execute. At this level, an operation

