US 2005/0005261 Al

[0383] A version instance of the present invention is a
grouping of the four data instances defined by a version
implementation.

[0384] A version instances refers back to a version imple-
mentation detailing the four attribute instances it must
possess.

[0385] A version instance has a one-to-one aggregation
relationship with a major release attribute instance that is an
instance of data that contains the value for the major release
according to the major release data implementation from the
version implementation. A version instance has a one-to-one
aggregation relationship with a minor release attribute
instance that is an instance of data that contains the value for
the major release according to the major release data imple-
mentation from the version implementation. The minor
release attribute is reset to its initial value (which may be
zero) when the major release is incremented. A version
instance has a one-to-one aggregation relationship with a
build release attribute instance that is an instance of data that
contains the value for the major release according to the
major release data implementation from the version imple-
mentation. The build release attribute is reset to its initial
value (which may be zero) when the major release or minor
release is incremented. A version instance has a one-to-one
aggregation relationship with a revision release attribute
instance that is an instance of data that contains the value for
the major release according to the major release data imple-
mentation from the version implementation. The revision
release attribute is reset to its initial value (normally zero)
when the major release, minor release, or build release is
incremented.

[0386] A version instance may include the following
operations: incrementMajorRelease() that is used to
increase the major release version, incrementMinorRelease(
) that is used to increase the minor release version, and
incrementRevisionRelease() that is used to increase the
revision release version.

[0387] An attribute change event is fired whenever a value
is added, changed, or removed.

[0388] Hint implementations must be implemented in the
model descriptor layer in order to be added to the meta-
model. A hint implementation has a one-to-one association
relationship with a hint descriptor is the hint descriptor that
describes the hint implementation. A hint implementation
has a zero-to-one association relationship with a description
that is a description of the purpose of the hint implementa-
tion. A hint implementation has a zero-to-many association
relationship with attribute implementations that are the
implementation of the various attributes to hold the values
for a hint.

[0389] A hint implementation includes a newlnstance()
operation to create a new hint instance. Hints may not take
constructor arguments.

[0390] An implementation change event is fired when the
hint descriptor is changed.

[0391] A hint instance holds the value or values fitting the
definition of its hint implementation.

[0392] A hint instance has one-to-one association relation-
ship with an implementation that is the hint implementation
that describes the hint instance. A hint instance has one-to-

Jan. 6, 2005

many association relationship with attribute instances that
are the attribute instances for capturing important details not
captured by any other element of the metamodel layer.

[0393] An attribute change event is fired whenever the
value held by the hint is changed.

[0394] A role implementation must be implemented in the
model descriptor layer in order to be added to the meta-
model. A role implementation has a one-to-one association
relationship with a role descriptor that is the role descriptor
that describes this implementation. A role implementation
has a zero-to-many association relationship with role imple-
mentations that are storage locations for other roles that
participate in this role. A role implementation has a zero-
to-many association relationship with hint implementations
that are storage locations for hints that participate in this
role.

[0395] A role implementation may include the following
operations: a newlnstance() to create a new role instance.
Roles may not take constructor arguments, getHints() that
returns the current hints(s), addHint(HintImplementation)
that add the hint given to the current hint implementations,
removeHint(HintImplementation) that removes the given
hint from the current hint values, clearHints() that remove
all hints, getRoles() that return the current roles, addRole-
(RoleImplementation) that add the role given to the current
role implementations, removeRole(RoleImplementation)
that remove the given role from the current role values, and
clearRoles() that remove all roles.

[0396] An implementation change event is fired whenever
the hints or roles are added or removed. An implementation
event is also fired when the role descriptor is changed to a
different role descriptor.

[0397] A role instance of the present invention is a con-
tainer for hint instances and other role instances. A role
instance has a one-to-one relationship with a role descriptor
that is the role descriptor that describes the role implemen-
tation. A role instance has a zero-to-many relationship with
role instances that are storage locations for other role
instances that participate in this role. A role instance has a
zero-to-many relationship with hint instances that are stor-
age location for a related group of hints that are applied in
several locations to capture details about a model that are not
captured in any other part of the metamodel layer.

[0398] A role instance may include the following opera-
tions: getHints() that returns the current hint instances,
andgetRoles() that return the current role instances

[0399] An attribute change event is fired whenever hints or
roles are added or removed.

[0400] A component integration engine of the present
invention assembles metamodels describing how a software
applications work. The tool then generates a meta-imple-
mentation or a virtual implementation directly without inter-
mediate source code and compilation. Meta-implementa-
tions are combined to perform all the necessary software
processes that make up an application. These processes are
made available as client-server applications or web-based
applications through user-access points designed for each
type of application. Other user-access points can be devel-
oped for other types of applications like email list-serve or
peer-to-peer applications.

