US 2005/0005261 Al

[0401] The tool provides meta-implementations for many
existing APIs provided as part of a programming language
and meta-implementations for accessing database structures
as models. The persistence engine and metamodel attributes
ensure proper storage of business data. The tool may also be
open to third-party metamodels and meta-implementations.

[0402] The virtual operations and meta-implementations
are combined via metadata to perform new operation imple-
mentations for virtually any type of application. These
operations are similar to those in a programming language:
Boolean and numeric expressions, branching statements,
and loop statements. These logical operations are combined
with the common services (database access, email access,
image operations, etc.) provided by the meta-implementa-
tion provider to assemble complex operations in the same
way programming languages create operations out of exist-
ing libraries of application programming interfaces (APIs).
In fact, by creating a meta-implementation descriptor for the
existing APIs in a programming language, all of the func-
tionality of a programming language can be made available
as meta-implementation operations.

[0403] A component integration engine is capable of all of
these functions. It serves to integrate components through
descriptions of the components and descriptions of pro-
cesses. Rather than generating source code to implement
each metamodel accessor in a specific way, the component
integration engine uses assemblies of accessors to create
software applications.

[0404] Use of a component integration engine to build
software using a meta-implementation layer dramatically
decreases the amount of time necessary to implement a
model. Rather than first modeling the software, then build-
ing that software; the modeling process is also the building
process. Modeling is required to be a complete, but the
modeling process may always have been complete.

[0405] While some metamodel components require spe-
cial programming to complete an implementation, the meta-
implementation provider can provide a wide range of opera-
tions as a set of common services. These services implement
commonly used operations in computer software like object-
relational mapping, object-XML mapping, object instantia-
tion and configuration, naming and directory operations,
database operations, email operations, DNS operations, log-
ging operations, object caching and pooling, web accessi-
bility, image generation, text formatting, batch scheduling,
and resource security. Since the meta-implementation layer
provides these services, they can simply be defined as part
of the metamodel without requiring additional implementa-
tion.

[0406] Meta-implementation layers are extensible. The
meta-implementation layer is extensible since any object
wishing to participate in the meta-implementation layer can
simply implement the appropriate interface and begin par-
ticipation. Being extensible means new model concepts and
technology components can be added directly to any com-
ponent integration engine implementation.

[0407] Applications built using meta-implementation are
easier to maintain. The meta-implementation layer imposes
loose coupling between components in an application. Each
component accesses the other components through a very
limited number of interfaces (the meta-implementation layer

Jan. 6, 2005

interfaces), no direct access occurs. Therefore, changes to
the implementation of one model require a minimal or no
changes to other models. Models are isolated from imple-
mentation errors in other models by the meta-implementa-
tion layer. Operations that comply with the metamodel
definition for preconditions, postconditions, parameter value
constraints, parameter access constraints, service access
constraints, and metamodels access constraints are unlikely
to propagate errors undetected through the meta-implemen-
tation layer. Care must still be taken to thoroughly document
side effects of operations since the component integration
engine may not check for all possible side effects. Side
effects are effects resulting from executing an operation that
are not obvious through changes to the parameters or return
type. An example of a side effect is running a findSquare-
Root(int) operation to retrieve the square root of a number,
and finding out that this program has entered data into a
database table. While this functionality might be correct, it
is a side effect, since it is not obvious that some external
change has been made.

[0408] The component integration engine of the present
invention reduces complexity by simplifying or eliminating
the mapping of a metamodel to a model to an implementa-
tion. It reduces time to implementation by automating the
implementation from the metamodel. It reduces software
code maintenance by not producing code and by providing
common services. It reduces maintenance by providing easy
to change, loosely coupled assemblies. It allows for the
integration of any new or existing technology through
meta-implementation.

[0409] Domains in the Component Integration Engine
(CIE) are the logical grouping of resources, meta-implemen-
tations, services, and a persistence engine as they relate to a
specific subject matter or problem domain. None of the
components available in a domain can be accessed without
the user of the domain first being authenticated.

[0410] Authentication is the process of confirming a user’s
true identity. Authentication in a component integration
engine is delegated to an authentication component. Like all
other components in a component integration engine, the
authentication component is configurable and swappable.
This “pluggable” approach to authentication allows any
valid authentication component to perform the authentica-
tion according to the current configuration. Components for
authentication can then be developed for biometrics, UNIX
login, database login, Windows NT login, file-based login,
Kerberos login, smart card login or any other current or
future authentication technology.

[0411] The problem domain holds resource managers to
manage shared resources. Shared resources are pre-config-
ured component instances that provide details about the
running environment or access to resources, services, or
functionality that can be shared amongst all users and
processes running in the domain. Example resources are
database connections, thread pools, object caches, and
resource stores. One manager exists for each type of shared
resource. Managers are accessed by the name of the resource
they manage. Resources are retrieved from the managers by
name or query.

[0412] Package accessors are described above. The pack-
age accessors in a component integration engine allow the
CIE or any program using the CIE the ability to access any



