US 2005/0005261 Al

[0440] Document workflow requires data storage for
documents and the recording of a documents progress
through a series of steps. The document workflow must
additionally create a process entity model that is written to
the database each time a step is started or completed. The
computer executes some steps. People who perform some
task and enter additional data into the computer complete
other steps. Frequently, one or more steps involve approval
of a document in order to progress to the next step.

[0441] Document Workflow essentially uses the schedul-
ing service of a component integration tool to scan for
records in a database table periodically. Any record entering
into an automated step is retrieved through object-relational
mapping and given as a parameter to the step, which is an
operation implementation.

[0442] 1If the step is not automatic, the document workflow
generally must provide a way to enter data into an object
model that is then stored in the database before marking a
step complete. The object structure and mapping to a data-
base has already been discussed. Providing a mechanism for
user input can be accomplished through web services by
using the serializer concept to generate an HTML form
directly from the object description, then setting the
attributes of the object from the values entered on this form.
Alternatively, a client-server program could create form
elements based on the model descriptors and set the values
directly on the object from those form elements. Once
entered from a form, the object data and the process entity
for the step can be recorded.

[0443] FIGS. 5-34 is a multi-part diagram illustrating how
a component integration engine of the present invention
operates. In FIGS. 5-34, the “user” is an end user.

[0444] After a developer defines the software models that
are part of each part of each application, the system admin-
istrator can configure the parts of the Component Integration
Engine of the present invention of FIG. 5. The parts of the
Component Integration Engine are based on standards to
allow the use of existing and new components developed by
third parties or by the programmers who program the
component integration engine. In many cases, the compo-
nents of the Component Integration Engine, such as: data-
bases, email servers, etc. are already owned by the company
for whom the system administrator works or the components
are provided as part of the Component Integration Engine to
the system administrator. The Component Integration
Engine is open to allow new components if existing com-
ponents are not a good fit.

[0445] As illustrated in FIG. 5, a developer defines the
descriptors of a metamodel repository of a component
integration engine of the present invention. A system admin-
ister configures authentication instances, access point
instances, shared service instances and persistence engines
that use authentication components, user access compo-
nents, service components and persistence components,
respectively. A 3™ party company and a programmer are
both able to write to authentication components, user access
components, service components and persistence compo-
nents.

[0446] In FIG. 6, with the Component Integration Engine
configured and the application models available, a developer
may now create flowchart assemblies. The flowcharts

Jan. 6, 2005

describe various responses to events that may occur. Some
events may originate from a user and other events may
originate from automatic triggers. The flowchart may create
or dispose of model instances, invoke methods, generate
signals or perform other necessary work. The flow chart
assembly may also call upon shared service or component
assemblies as necessary. The user access point provides a
mechanism for organizing these flow charts in a way that the
user may execute them to perform some useful activity. This
organization of flowcharts, services, models, and instances
creates a software application.

[0447] As shown in FIG. 6, a developer creates flowcharts
in the flow chart assembly(s) of the Component Integration
Engine. A model instance of the flowchart assembly(s) uses
component assemblies. A method instance of the flowchart
assembly(s) also uses component assemblies. A constraint
instance of the flowchart assembly(s) uses authentication
instances. A method instance of the flowchart assembly(s)
uses shared service instances. A method instance of the
flowchart assembly(s) uses persistent engines.

[0448] 1In FIG. 7, a user of a software application is
unaware of the Component Integration Engine. The user
accesses the software application through a user accesspoint,
such as: a client-server program, a socket, a web page, an
email message, etc. The user access point determines the
correct flowchart assembly to invoke. The parts of this
assembly are free to create new instances of any of the
existing implementations, invoke operations, or use any of
the shared services or resources. The results from the
flowchart assembly are returned to the user access point and
the display to the user is updated appropriately.

[0449] As shown in FIG. 7, a user sends an application
signal by clicking a button, entering data, etc. to user access
point instances of the Component Integration Engine. The
user access point instances calls the flowchart assembly(s)
and the flow chart assemblies return results to the user access
point instances.

[0450] FIG. 8 is a static diagram showing the relation-
ships between classifiers such as: interfaces, datatypes,
models, etc. of the Component Integration Engine. One or
more static diagrams may be converted to descriptors to be
stored in the metamodel repository of the meta-implemen-
tation layer of the Component Integration Engine. To con-
vert from UML to the metamodel repository, the metameta-
model repository contains descriptions of the UMS
metamodel elements.

[0451] Inthe following figure descriptions, the use of <1>,
<2>, <n> following an element name in a figure indicates
that zero-to-many instances of that named element may exist
in the containing element. In some instances only the <1>
and <n> or just the <n>appears; the same meaning is
intended in these cases, but for reasons of space or clarity the
<1> and <2> are omitted.

[0452] In the figures described below, “handler” refers to
a component that understands a certain format of input and
converts that input into the appropriate object structure as its
output. In the figures described below, many handlers pro-
duce descriptors and source from an input object that has the
same first part of the name as the descriptor but no following
tag. These are “descriptions™ originating from an external
source and may vary in format. In one embodiment of the



