US 2005/0005261 Al

present invention, these external sources are UML docu-
ments or XMI documents. In another embodiment, these are
text files in a predetermined format. In yet another embodi-
ment, these are table structures in a database. It is only
required, that these “descriptions” have a format understood
by a handler designed for that format and contain data
related to the descriptor the handler will produce.

[0453] Many simple handlers simply copy a string value
from the description to the descriptor. Other handlers create
a feature descriptor of the output descriptor and set attributes
based on string values in the description. In this way, a
description is converted a descriptor to participate in the
meta-implementation layer.

[0454] Handlers mapping a descriptor to an implementa-
tion have a very well defined input and a very well defined
output. The handler constructs the output implementation,
then sets the attributes, signals, operations, etc. of that
implementation based on the description given in the
descriptor. In many cases, the handler is able to construct a
fully functional implementation based on the descriptor. In
cases where the descriptor is not fully defined, the handler
will complete as much of the implementation as possible
based on the available data and return a warning to the user.
In this way, a descriptor is converted into an implementation
to be used in the meta-implementation layer and component
integration engine.

[0455] Several handlers occur repeatedly in the figures.
The name handler simply copies a string of input represent-
ing a name to the appropriate attribute in the output. The
documentation handler simply copies a string of input
representing a description to the appropriate attribute in the
output. The tagged values handler copies a pair of strings,
one representing a name the other representing a value, to a
hint instance with a name attribute and a value attribute. The
constraint handler tries to interpret the description input to
construct a constraint descriptor. In many cases, the input
source is insufficient to construct a constraint descriptor. In
these cases the constraint handler will simply construct a
constraint descriptor with the appropriate name from the
input description and as much detail as possible and warn the
user of the incomplete constraint.

[0456] Some descriptions will contain a string represent-
ing the preferred language in which to be implemented. This
string is unimportant in the context of a meta-implementa-
tion layer, but is preserved as a hint for code generators to
convert the meta-implementation to compilable source code.
The language string is used as the name of a pre-defined role
containing zero-to-many hints used by these code genera-
tors.

[0457] Handlers dealing with input with the string “Type”
in the name use the input string to lookup a datatype,
interface, or model to use as the classifier type in the
handler’s output. The output consists of the identity of the
type as the type is stored in the metamodel repository.
Handlers dealing with input with the string “Kind” in the
name use the input string to lookup a value in an enumera-
tion. The name of the input generally matches the name of
the enumeration and the value of the input matches the name
of the value selected in the enumeration. For example, an
“Owner scope” input with a value of “classifier” is used to
lookup the “Owner scope” enumeration in the metamodel
repository and select the “classifier” value from that enu-

Jan. 6, 2005

meration as output from the handler. Several other pre-
defined enumerations exist for use by the handlers including
“Changeability”, “Visibility”, “Concurrency”, “Parameter
Kind”, “Model Stereotype”, and “Operation Kind”. More
enumerations may be defined by other embodiments of the
present invention or by users of the present invention to
handle other current and future descriptor inputs.

[0458] Insome of the descriptors, the attribute name ends
with the string “Indicator” or “Flag”. These attributes hold
a Boolean (“true” or “false”) value. Handlers which create
these outputs determine if the input represents a “true” value
(“T7, “true”, “True”, 1, etc.) or a false value (“F”, “false”,
“False”, 0, <null>, etc.) and set the attribute accordingly.

[0459] In the figures described below, implementations
contain a pointer to the descriptor for which they are an
implementation. By holding a descriptor, the implementa-
tion allows a user of the system to understand what the
implementation does and why it does it. By providing its
own metadata, the implementation allows a user to under-
stand how the implementation does what it does. Instances
also hold a pointer to the implementation that created them,
allowing a user (human or otherwise) to retrieve the imple-
mentation and through the implementation retrieve the
descriptor.

[0460] As shown in FIG. 8, Static Diagrams (Static
Diagram<n>) include Zero-to-many DataTypes
(DataType<1>, DataType<2>, DataType<n>), zero-to-many
Packages (Package<n>), zero-to-many Models (Model<1>,
Model<2>, Model<n>), Zero-to-many Interfaces
(Interface<n>), zero-to-many Signals, and zero-to-many
Associations. Each class (Class<n>) belongs to a single
package (Package<n>). Some classes will implement inter-
faces (Class<1>, Interface<n>) but not all classes implement
interfaces (Class<3>). Not all classes implement the same
interfaces (Class<2> and Interface<2> and Class<1> and
Interface<n>). Some classes participate in association rela-
tionships (Class<2>, Class<3>, Association<n>) but not all
classes participate in association relationships (Class<1>).
Some classes generate signals (Class<2>, Signal) but not all
classes generate signals (Class<1>, Class<3>). Some classes
receive signals (Class<3>), but not all classes receive signals
(Class<2>, Class<1>). Although not pictured, classes may
send or receive signals without necessarily being in an
association relationship.

[0461] As shown in FIG. 9, the Metamodel Repository of
the Component Integration Engine includes DataType
Descriptors, Model Descriptors, Signal Descriptors, Enu-
merations, Other Element Descriptors, Package Descriptors,
Interface Descriptors, Hint Descriptors, and Role Descrip-
tors. As shown in FIG. 9, a Static Diagram Handler of the
Component Integration Engine includes a DataTypes Han-
dler, a Packages Handler, an Interfaces Handle, a Models
Handler, an Associations Handler, and a Signals Handler.

[0462] As indicated by connector A of FIGS. 8 and 9,
State Diagram<n> is read by Static Diagram Handler shown
in FIG. 9. The static diagram handler is composed of a
datatypes handler, packages handler, interfaces handler,
models handler, associations handler, and signals handler.
These handlers are described in the following sections. Each
handler handles a specific description in the static diagram
and creates the appropriate descriptor which is stored in the
metamodel repository. The datatypes handler handles each



