US 2005/0005261 Al

the Metahint Impl Generator. In FIG. 15, the Attribute
Handler of the Metahint Impl Generator creates Attribute
Implementations of the Metahint Implementation. In addi-
tion to the Attribute Implementations, the Metahint Imple-
mentations includes the Metahint Descriptor it implements.
The Name Attr(ibute) Impl(ementation) of the Attribute
Implementations creates a Name of the Attribute Instances
of the Hint Descriptor. The Value Attr(ibute) Impl(ementa-
tion) of the Attribute Implementations creates a Value of the
Attribute Instances of the Hint Descriptor. Any other
attribute implementations (Other Attr Impl) of the Attribute
Implementations create attributes appropriately (Other
Attribute<n>) in the Hint Descriptor. In addition to the
Attribute Instances, the Hint Descriptor includes the Meta-
hint Implementation of which Hint Descriptor is an instance.

[0472] The Hint Descriptor is read by the Hint Impl(e-
mentation) Generator, which creates a Hint Implementation.
An Attribute Handler of the Hint Impl Generator creates a
Name, Value and other attributes (Other Attributes<n>) of
the hint implementation. The Hint Implementation also
includes the Hint Descriptor of which the Hint Implemen-
tation is an implementation. The Name, Value and Other
Attributes of the Hint Implementation create the Name,
Value and Other Attributes<n>, respectively of the Hint
Instance. The Hint Instance also includes a pointer to the
Hint Implementation that created it of which it an instance.

[0473] In FIG. 14, a Tagged Value description is read by
a Tagged Value Handler to create a Hint Instance. The
Tagged Value handler uses the appropriate Hint Implemen-
tation to create the Hint Instance then maps the Name and
Value from the Tagged Value to the Name Attribute Instance
and Value Attribute Instance held by the Hint Instance.

[0474] Although not shown in every figure of FIGS. 5-34,
every descriptor is defined by a Meta<Element> descriptor
just as pictured in the Metahint Descriptor of FIG. 14.

[0475] As shown in FIG. 14, a user defines a Role
Descriptor including a Description, Hint Names and Role
Names. As indicated by connector 1 of FIGS. 14 and 15, the
Role Descriptor is ready by a Role Impl Generator of FIG.
15. The Role Descriptor is saved to the Metamodel Reposi-
tory of the Component Integration Engine.

[0476] A Role Implementation of the Component Integra-
tion Engine includes a pointer to the Role Descriptor for
which the Role Implementation is an implementation and
looks up roles and looks up hints from the Metamodel
Repository. The Metamodel Repository is used to lookup the
Hint Implementation to create Hint Instances for each Hint
Name held by the Role Implementation. The Metamodel
Repository is also used to lookup the Role Implementation
to create Role Instances for each Role Name held by the
Role Implementation.

[0477] Also as shown in FIG. 14, a Stereotype is read by
a Role Descriptor Handler and creates a Role Descriptor. A
Name of the Stereotype is handled by a Name Handler of the
Role Descriptor Handler to set the value of the Name
Attribute Instance on the Role Descriptor. Tagged Values of
the Stereotype are handled by a Tagged Value Handler of the
Role Descriptor Handler to create the Hint Names of the
Role Descriptor.

[0478] In FIGS. 16 and 17 a DataType is read by a
DataType Descriptor Handler to create a DataType Descrip-

Jan. 6, 2005

tor. The data type descriptor is read by a DataType Impl(e-
mentation) Generator, as indicated by connector J, to create
a DataType Implementation. The DataType Implementation
can then be used to create DataType Instances. A Name,
Documentation, a Parent DataType, Operations, Constraints
and Tagged Values of the DataType are handled by a Name
Handler, a Documentation Handler, a Parent DataType Han-
dler, an Operations Handler, a Constraints Handler and a
Tagged Values Handler, respectively, of the DataType
Description Handler. The Name Handler of the DataType
Descriptor Handler handles the Name of the DataType
Descriptor. The Documentation Handler of the DataType
Descriptor Handler handles the Description of the DataType
Descriptor. The Parent DataType Handler of the DataType
Descriptor Handler handles the Parent Type Name of the
DataType Descriptor. The Operations Handler of the
DataType Descriptor Handler creates the Operation Descrip-
tors of the DataType Descriptor. The Tagged Values Handler
of the DataType Descriptor Handler creates the Hint
Instances of the DataType Descriptor.

[0479] The Operations Descriptor is read by the Opera-
tions Handler of the DataType Impl Generator as indicated
by connector K. The Constraint Descriptors are read by the
Constraint Handler of the DataType Impl Generator, as
indicated by connector L. The Initial Value Config(uration)
of the DataType Descriptor is read by the Initial Value
Handler, as indicated by connector M. The DataType
Descriptor also includes Role Instances added by a user to
further capture details about the datatype which are not
adequately captured anywhere else.

[0480] The Operation Handler of the DataType Impl Gen-
erator creates the Operation Implementations of the
DataType Implementation. The Constraint Handler of the
DataType Impl Generator creates the Constraint Implemen-
tations of the DataType Implementation. The Initial Value
Handler of the DataType Impl Generator creates the Initial
Value Instance of the DataType Implementation. The
DataType Implementation also includes a pointer to the
DataType Descriptor of which the DataType Implementation
is an implementation.

[0481] The Operation Implementations of the DataType
Implementation creates Operation Instances of the DataType
Instance. The Constraint Implementations of the DataType
Implementation create Constraint Instances of the DataType
Instance. The Initial Value Instance creates Value(s) of the
DataType Instance. The DataType Instance also includes a
pointer to the DataType Implementation of which the
DataType Instance is an instance.

[0482] In FIGS. 18 and 19 a Constraint is read by a
Constraint Descriptor Handler to create a Constraint
Descriptor. The constraint descriptor is read by the Con-
straint Impl(ementation) Generator, as indicated by connec-
tor N to create a Constraint Implementation. The Constraint
Implementation can then be used to create Constraint
Instances. A Name, Documentation, an OCL Body, and
Tagged Values of the Constraint description are handled by
the Name Handler, Documentation Handler, OCL Handler,
Tagged Value Handler, and Language Handler, respectively,
of the Constraint Descriptor Handler.

[0483] The Name Handler, Documentation Handler and
OCL Handler of the Constraint Descriptor Handler map to
the Name, Description and OCL Rule Descriptor, respec-



