US 2005/0005261 Al

tively, of the Constraint Descriptor. The Tagged Values
Handler of the Constraint Descriptor Handler creates Hint
Instances of the Constraint Descriptor. The Language Han-
dler of the Constraint Descriptor Handler looks up a role in
the Metamodel Repository for the language named by the
language name description. The language handler retrieves
the Role Implementation for that language and uses it to
create one of the Role Instances of the Constraint Descriptor.
The language role may be used by code-generators to
generate source code from the Constraint Descriptor in the
appropriate language. The language role may contain one or
more hint instances to aid the code-generation process.

[0484] The Configuration of the Constraint Descriptor is
read by the Constraint Impl Generator, as indicated by
connector O. The OCL rule Descriptor is read by the OCL
Rule Handler of the Constraint Impl Generator. The Con-
straint Impl Generator gets a model from the Metamodel
Repository. If the model is found, an implementation is
added to the Model Implementation of the Constraint Imple-
mentation. If no model is found, a model is created in the
Model Implementation. The Model Implementation then
adds the Model to the Metamodel Repository. The OCL
Rules Handler of the Constraint Impl Generator creates an
operation in the Operation Implementation of the Model
Implementation. In one embodiment of the present inven-
tion, an OCL parser interprets the OCL language to construct
virtual operations corresponding to the OCL language. The
Model Implementation also includes Other Model Parts as
described in the Model Implementations described in FIG.
30 and FIG. 31.

[0485] In FIG. 18, the Constraint Implementation
includes a pointer to the Constraint Descriptor for which the
Constraint Implementation is an implementation. During the
creation process, the constraint implementation uses the
Model Implementation to create the Model Instance used by
the Constraint Instance. The constraint implementation uses
the configuration from this constraint descriptor when cre-
ating constraint instances to configure the model instance
held by the constraint instance. The Constraint Instance also
includes a pointer to the Constraint Implementation that
created it of which the Constraint Instance is an instance.

[0486] In FIGS. 20 and 21, a Method description is read
by a Method Handler to create a Method Descriptor. The
method descriptor is read by a Method Impl(ementation)
Generator, as indicated by connector Q, to create a Method
Implementation. The Method Implementation can then be
used to create a Method Instance. A Name, Documentation,
an Operation Kind, a Scope, Visibility, Call Concurrency,
Polymorphic, Query, Return Type, Parameters, Failures,
Constraints, Receptor Descriptors, Tagged Values and Code
Language in the Method description are handled by a Name
Handler, Documentation Handler, Operation Kind Handler,
Scope Handler, Visibility Handler, Concurrency Handler,
Polymorphic Handler, Query Handler, Return Type Handler,
Parameters Handler, Failures Handler, Constraints Handler,
Tagged Values Handler, and Language Handler, respec-
tively, of the Method Handler. The Name Handler, Docu-
mentation Handler, Operation Kind Handler, Scope Handler,
Visibility Handler, Concurrency Handler, Polymorphic Han-
dler, Query Handler, and Return Type Handler of the
Method Handler map to the Name, Description, the Opera-
tion Kind, the Scope, the Visibility, the Concurrency, the
Polymorphic Indicator, the Query Indicator, and the Return

Jan. 6, 2005

DataType Indicator, respectively, of the Method Descriptor.
The Parameters Handler, Failures Handler, Constraints Han-
dler, Tagged Values Handler, and Language Handler of the
Method Handler create the Parameter Descriptors, the Fail-
ure Descriptors, the Constraint Descriptors, the Hint
Instances, and the Role Instances, respectively, of the
Method Descriptor.

[0487] The Parameter Descriptors, Constraint Descriptors,
the Operation Descriptors, and the Signal Descriptors of the
Method Descriptor are read by the Parameters Handler, as
indicated by connector R, by the Constraints Handler, as
indicated by connector S, by the Operations Handler, as
indicated by connector T, and by the Signals Handler as
indicated by the connector U, respectively, of the Method
Impl Generator. The Parameters Handler, the Constraints
Handler, the Operations Handler, and the Signals Handler of
the Method Impl Generator create the Parameter Implemen-
tations, the Constraint Implementations, the Operation
Implementations and the Signal Implementations, respec-
tively, of the Method Implementation. The Method Imple-
mentation also includes a pointer to the Method Descriptor
of which the Method Implementation is an implementation.

[0488] The Parameter Implementations, the Constraint
Implementations, the Operation Implementations and the
Signal Implementations of the Method Implementation cre-
ate the Parameter Instances, the Constraint Instances, the
Operations Instances, and the Signal Instances, respectively,
of the Method Instance. The Method Instance also includes
a pointer to the Method Implementation of which the
Method Instance is an instance.

[0489] In FIGS. 22 and 23, an Attribute is read by an
Attribute Handler to create an Attribute Descriptor. The
attribute descriptor is read by an Attribute Impl(ementation)
Generator, as indicated by connector V, to create an imple-
mentation of the an Attribute Implementation. The Attribute
Implementation can be used to create Attribute Instances. A
Name, Documentation, Visibility, Owner Scope, Multiplic-
ity, Type, Changeability, Constraints, an Initial Value,
Tagged Values and a Language Name of the Attribute
description are handled by a Name Handler, a Documenta-
tion Handler, a Visibility Handler, an Owner Scope Handler,
a Multiplicity Handler, a Type Handler, a Changeability
Handler, a Constraints Handler, an Initial Value Handler, a
Tagged Values Handler, and a Language Handler, respec-
tively, of the Attribute Handler.

[0490] The Name Handler, Documentation Handler, Vis-
ibility Handler, Owner Scope Handler, and Multiplicity
Handler of the Attribute Handler map to a Name, Descrip-
tion, Visibility, Owner Scope and Multiplicity, respectively,
of the Attribute Descriptor. The Type Handler creates the
Datatype Descriptor of the Attribute Descriptor. The
Changeability Handler used the Attribute Changeability
Enumeration, which is predefined in the metamodel reposi-
tory, to create an access constraint to prevent certain types of
changes to the attribute instances. The constraints handler
creates constraint descriptors and the tagged values handler
creates hint instances. The language handler reads in the
name of a language to create a role descriptor used by code
generators for that specific language. The initial value han-
dler converts its input into a configuration for constructing
an instance of the initial value. Generally, descriptions from
an external source will limit initial values to primitives or



