US 2005/0005261 Al

variety that exists in the original event types, events carry a
topic object. The topic object carries a function type that is
currently one of the following: data, state, action, or log.
Additional function types can be added at a later point if a
new function type is discovered. These function types cor-
respond to the main event types that are divided in different
ways through many different components in different lan-
guages. Further, a different topic interfaces exist to describe
the type of data they carry. The interfaces that exist for topics
currently include the following: definition, destruction,
enable, instantiation, invocation, and value. These interfaces
also serve as either a notification or a request. The definition
topic type contains the metadata definition, which defines
valid values that can occur in the event. Destruction events
either notify of an object being destroyed or request that
another component destroy an object. Enable allows view
components or model components to be “disabled” to pre-
vent changes. Instantiation is the opposite of destruction,
relating to the creation of objects. Invocation requests a
command be executed, or notifies that a command (or
method) is being executed. Value notifies (or requests) the
current value for a specific name.

[0530] For any event name, the combination of a function
type, a topic type and the event serving as either a notifi-
cation or a request allows a very small number of interfaces
(4 function types, 6 topic types, and 2 topic roles) to replace
all other events models. These interfaces lead to the “4.6.2”
in HMVC 4.6.2.

[0531] The second part of this innovation is the use of a
different structure for handling events between the model
and view. The most popular approach is to use a model-
view-controller pattern approach. In that approach, all view
logic and view components are grouped into the view; all
domain logic and business logic is grouped into the model;
and all input handling (reacting to events to invoke methods
on the model) is placed in the controller. Unfortunately, this
does not allow for both small components and high reus-
ability of code.

[0532] By placing all the component logic and display
logic in the view, the view must handle the logic for getting
and setting the data for each component in the view, as well
as handling the interactions that occur between components.
If selection of one item in a drop-down box causes the
addition or removal of items in a different drop-down, the
view must handle this. However, if the exact same compo-
nents, arranged in the exact same layout for display, need to
display a slightly different functionality, it may be impos-
sible to reuse the view if the code is not moved into a
separate component. If the view does move this logic into a
separate component, in the MVC pattern, the view is still the
responsibility of the view to setup and add the new com-
ponent, which still prevents substitution of this logic, and
still prevents the reuse of the view.

[0533] A solution is to create a new component in the
architecture that is responsible for the interactions between
components, while leaving the view responsible for indi-
vidual components. This new object is the view controller.
The view controller can be substituted without requiring any
changes to the view, allowing complete reuse of a single
component or a set of components. To allow substitution of
smaller logical parts, a view controller consists of a hierar-
chy of small functional units, each handling one small group

Jan. 6, 2005

of interactions between components. This allows compo-
nentization of display logic and reuse of common function-
ality even when applied to different sets of components. A
view controller therefore meets the two goals of this inven-
tion: it reduces direct object connections (by connecting
objects through event handling) and improves code reuse
(by using a hierarchy of reusable components and moving
small differences of display logic out of a view so the view
can be reused without submodeling).

[0534] A similar situation and solution occurs in the
model. By placing all the model logic and attributes in the
model, the model must handle the logic for getting and
setting the data for each attribute in the model, as well as
handling the interactions that occur between attributes. In
the case of an on-line order for products, the “order” model
holds the “line items™ attribute that can contain one or more
items being purchased and the “total cost™” attribute which is
the sum of the cost of each line item. The order model is
responsible for adding and removing items from the order as
well as the logic to request a credit card number, calculate
the total cost of the items, check for authorization, and bill
the correct amount to the credit card. Even by separating the
credit card and billing logic into a separate model, it is still
the responsibility of the order model to setup and use the
credit card authorization model. The replacement of credit
card billing logic with logic for another method of payment
(micro-transactions, electronic check, direct withdrawal)
requires a rewrite of the order model to make it aware of
these new methods. In the case of micro-transactions, even
the calculations for the total cost of the order will be
different.

[0535] A solution is to create a new component in the
architecture that is responsible for interactions between
attributes, while leaving the model responsible for the get-
ting and setting attributes. This new object is the model
controller. The model controller can be substituted without
requiring any changes to the model, allowing complete reuse
of a single attribute or a set of attributes. To allow substi-
tution of smaller logical parts, a model controller consists of
a hierarchy of small functional units, each handling one
small group of interactions between attributes. This allows
componentization of model logic and reuse of common
functionality even when applied to different sets of
attributes. A model controller therefore meets the two goals
of this invention: it reduces direct object connections (by
connecting objects through event handling) and improves
code reuse (by using a hierarchy of reusable components and
moving small differences of display logic out of a view so
the view can be reused without model inheritance).

[0536] So the first adjustment for the HMV is to use a
“model-view controller-view-input controller-model con-
troller-model” pattern. Using the pattern of the first adjust-
ment for the HMV, it becomes apparent that the original
MVC pattern did not allow events from the model to be
changed before being received by the view components,
even though it did allow input events from the view to be
altered. To give this flexibility, the input controller will be
renamed “view out controller” and an equivalent “model out
controller” are be added in the same location on the model
side to form a “model-model out controller-view in control-
ler-view-view out controller-model in controller-model”
pattern.



