US 2005/0050069 Al

where the source object data 114 can be mapped to a target
object data model (the object component 106) having a
different object structure. The OSD language component 112
and mapping component 110 facilitate this process. Still
further, a scenario can exist where the source XML data 120
can be mapped to a target XML data model (the XML
component 108) having a different XML structure. The XSD
language component 118 and mapping component 110
facilitate this process.

[0029] Referring now to FIG. 2, there is illustrated a flow
chart of a process for generating RSD from the relational
database. While, for purposes of simplicity of explanation,
the one or more methodologies shown herein, e.g., in the
form of flow chart, are shown and described as a series of
acts, it is to be understood and appreciated that the present
invention is not limited by the order of acts, as some acts
may, in accordance with the present invention, occur in
different orders and/or concurrently with other acts from that
shown and described herein. For example, those skilled in
the art will understand and appreciate that a methodology
could alternatively be represented as a series of interrelated
states or events, such as in a state diagram. Moreover, not all
illustrated acts may be required to implement a methodology
in accordance with the present invention.

[0030] Flow begins at 200 where a tool of the disclosed
architecture is activated according to trigger data. Some
types of triggering events are described hereinbelow. At 202,
the tool, as part of the RSD component, executes to walk
through the relational database metadata to find the tables
and columns and, relationships therebetween. At 204, the
tool provides the capability to allow the user to select all or
a subset of the relationships for use in the RSD file. At 206,
the tool allows the user to make a selection. At 208, the tool
creates the RSD file of the selected relationships that pre-
cisely describe the database structure and data. At this point,
optional extensions are included to support implementation-
specific extensions and derivations from an ANSI (American
National Standards Institute) standard schema (e.g., SQL
Server, Oracle . . . ). At 210, the RSD file is stored for later
access. The process then reaches a Stop block.

[0031] Referring now to FIG. 3, there is illustrated a
general block diagram of the RSD language component 102
of FIG. 1. The RSD component 102 includes a tool 300 for
extracting the metadata from the relational database 100 and
using the metadata to generate the RSD file 104. The overall
schema of the RSD file 104 is a combination of physical
information 302 (or elements) and logical information 304
(or elements) used to describe the relational database 100.
The physical information 302 can be harvested directly from
the database 100 automatically using the tool 300, while user
annotations to that information are added incrementally to
provide the logical element thereof. Annotations are made
based upon user knowledge of the relationship between the
database tables. This can be performed manually or auto-
matically. Where automatically, a smart algorithm can be
employed to derive the annotation information from, e.g.,
foreign key constraints. Thus the smart algorithm can walk
through the database extracting this information for anno-
tating the table relationships. This can be further automated
by requiring a degree of certainty that the annotations are
correct. Thus, if the user requires that the automated anno-
tation process achieve a minimum 95% accuracy, perfor-
mance less than this may require manual correction and

Mar. 3, 2005

review to ensure the database is precisely captured in the
RSD file 104. This process can also be performed via a
classification process that is described in greater detail
hereinbelow.

[0032] A database is typically defined at least according to
tables and columns. The relationships between tables is not
well-defined, which are the logical components of the rela-
tional database. The logical elements are useful for repre-
senting the semantics of the database, for mapping the
database to another data model, for modeling, etc. A way to
obtain a “hint” at the table relationships is via a foreign key.
In order to describe a relationship between tables, the logical
element is used. Thus, given an RSD file, the relational
database is recreated by using both the physical and logical
elements. The tool 300 is sufficiently sophisticated to handle
merge scenarios where the RSD file 104 has been updated by
the user with logical information and is then refreshed from
the database 100.

[0033] The following convention is adopted such that
element names that are written in Times 12 plain text font
are denoted as physical elements that are derived directly
from the database 100. These elements are appropriately
regenerated from the database 100 each time the generation
tool is run. Element names that are written in Times 12
italics text font are denoted as logical elements that can be
annotated with an IsLogical attribute. If the IsLogical
attribute is TRUE, RSD generation tools respect the user-
supplied extensions and do not overwrite that information
when updating the RSD file 104 from the database 100.

[0034] The RSD file generation process can be initiated
manually or automatically. Manual operation simply
requires that the user initiate the process by way of a user
interface or other communication means. When performed
automatically, the tool 300 can be triggered to operate
according to any number of trigger mechanisms. The RSD
file generation process can be initiated according to prede-
termined time criteria (e.g., hourly, daily, weekly) to process
the current state of the database. Thus, the RSD file 104
could be updated every ten minutes by running the tool to
extract the latest state of the database. However, this fixed
time increment may not provide that latest state of the
database if the database is updated after the most recent RSD
file generation.

[0035] Alternatively, the tool can be automatically acti-
vated to generate an updated RSD file 104 after a database
change has been detected. For example, if it is determined
that five percent of the database 100 has experienced
changes, the tool 300 could be automatically triggered to
update the RSD file 104.

[0036] Still alternatively, the tool can be activated to
generate the RSD file 104 only when the database is
accessed by a non-relational database query, either before
the query is made, or after the query is completed. However,
this too may involve more time then is desirable, since the
requestor may then need to wait until the process complete,
if performed before the query.

[0037] In another scenario, if certain portions of the data-
base 100 are determined to be a higher priority data then
other portions, then after changes have been made in the
higher priority data, the tool could be automatically acti-
vated to update the RSD file 104.



