US 2005/0050069 Al

Sub-Elements

Tag Card Comment

PrimaryKey 0-1 A table may have a primary key. At most
one is allowed. Primary key can be defined
on a set of columns. The PrimaryKey
element will refer to these columns.

This is a logical (user-supplied) element
which defines a set of columns which
uniquely identify a row in the table

without using that table’s primary key

Alternateldstructure 0-1

[0190] 31. PrimaryKey

[0191] This element represents a Primary Key for a table.
It is always defined in the context of a Table. It references
the column(s) that define a primary key for this table.

Tag Card Comment
Attributes
Name Req Constraint name.

Sub-Elements

ColumnRef 1+ Each ColumnRef refers to a column that

is a part of this primary key.

[0192] 32. Alternateldentity,

[0193] Alternateldentity is used by the Bulkl.oad upsert
feature. The columns defined by the Alternateldentity con-
straint can be used to uniquely identify a row in a table
without making use of the PrimaryKey.

Sub-Elements

Tag Card Comment

ColumnRef 1+ Each ColumnRef identifies a single column
on the current table that is part of the

Alternateldstructure for that table

[0194] RSD Generation Notes

[0195] Alternateldentity is logical by default and must be
preserved by RSD Generators when they refresh from the
database.

[0196] 33. ColumnRef

[0197] This element is used to refer to a column previ-
ously defined, and is used to refer to columns from con-
straints, etc.

Attributes

Tag Card Comment

Name Req The name of a column that belongs to the parent

Table that contains the PrimaryKey element.

Mar. 3, 2005

[0198] Custom Tables

[0199] The Custom Tables feature is a mechanism
whereby the user can support database operations as a means
to make up a logical table. The user can perform transfor-
mations on the physical data when reading or writing from
the database. Custom Tables enables the capability to map
fields from the target domain to Commands (stored proce-
dures, user-defined functions or inline SQL statements) on
the relational DataSource. This keeps mapping itself simple
and unaffected by relational-specific things. Custom Tables
provides an abstraction to mapping that allows commands in
the database to be mapped to just as if they were physical
tables, in most cases. Specifying this abstraction at the RSD
level allows the user to deal with relational-specific concepts
using relational terminology, rather than attempting to use
domain-independent terminology at the mapping level.

[0200] For example, columns already exist in the rela-
tional domain. Custom Tables provides a CustomTable
element where columns can be added just as in normal RSD
Tables. This also helps keep mapping from becoming clut-
tered, and optimizes the solution by not introducing more
places where the user must go to wire up the pieces.

[0201] Scenarios for Custom Tables include the following.

[0202] Adding a Condition to a Table/View. In this sce-
nario, the user wants to add a filter to the base table. The
canonical example is for the single table object-inheritance
scenario where Person, Employee, Manager, etc., are all
mapped to the same table and the user wants to filter the
table based on the ‘type’ column. The user can specify a
condition so that each type is mapped to its own table.

[0203] Add/Override Primary Key. Views by default do
not have primary keys, but in order to use them effectively
within the framework, a primary key field(s) must be defined
on all structures. In order to achieve this, the user can create
a simple Custom Table to specify the key field(s) on a view.
The user can employ this same functionality to override the
primary key on the underlying table or apply a virtual key to
a procedure.

[0204] SingleComplexMapping. The user uses normal
table mapping, but is faced with a limitation in mapping. To
get around this, the user creates a one-off custom table. This
scenario is distinct as the user only uses custom tables in
limited areas and they should be able to use these in
combination with normal physical table mapping.

[0205] Examples of this type of scenario include addi-
tional read-only columns on a UDF for Query, and addi-
tional write-only columns on an Update or Insert (userid,
time updated, client-side calculated values, etc.).

[0206] ReadOnlyTables. The user has access to tables for
read-only, but must use stored procedures for CUD. In this
scenario, the user wants to base the Custom Table on an
existing physical table, but override the Insert, Update and
Delete operations to use stored procedures.

[0207] All Stored Procedures. The user cannot access
tables at all and must use stored procedures and/or UDFs for
all database access. In this scenario, there is no physical
table on which to base the custom table.

[0208] Existing stored procedures. The scenarios above
need to account for the situation where the user does not



