US 2005/0050069 Al

have the ability to create custom User-Defined Functions or
StoredProcedures in the database to be used by the CQR
engines and are forced to use existing stored procedures. For
existing stored procedures, these may not be normally used
as a unified CRUD set and shaping/naming may be different
between each stored procedure. In general, existing stored
procedures cannot be altered because other legacy applica-
tions will be using them. This may result in the user needing
to write SQL to manipulate the results. The user may also
want to use SQL to massage data when mapping signifi-
cantly de-normalized tables.

[0209] Custom SQL. In this scenario, the user does not
have a procedure on the server to implement CRUD opera-
tions, but desires to perform some type of advanced behav-
ior, so the user is allowed to craft arbitrary SQL with some
restrictions. Examples of this scenario include: custom shap-
ing; calling scalar UDFs/UDT methods; and Inserting/Up-
dating/Deleting data in multiple tables or tables other than
the table that serves as the BasedOn for the CustomTable.

[0210] Custom Table Format

[0211] 1. CustomTables Element For consistency with
other RSD structures, the CustomTables element represents
a container element for zero or more CustomTable types.
CustomTables is a child of the Schema element. The impli-
cation of this is that custom tables are referenced in the
Mapping file exactly like physical tables.

[0212] 2. CustomTable Element

[0213] The CustomTable element is exposed to mapping
as if it is a table, but under the covers it allows customization
so that Insert, Delete, Update and Query commands can be
overridden to come from various DB structures such as
stored procedures, UDFs, or inline SQL statements as out-
lined below.

[0214] CustomTables fall into two main categories: Base-
dOn and Procedure Abstraction. BasedOn CustomTables are
based on a physical table or view and generate one or more
of their Commands automatically according to the definition
of the BasedOn structure. Automatically-generated com-
mands behave as if they were executed directly against the
BasedOn structure. BasedOn CustomTables can still over-
ride individual commands. Procedural Abstraction Custom-
Tables do not have any automatically generated commands
and must have their Columns defined explicitly. The Col-
umns serve as an abstraction for binding FieldMaps to
parameters and/or Result columns.

Tag Card Comment
Attributes
Name Req String representing the name of the

CustomTable. Must conform to the
structure naming and uniqueness rules
(i.e., cannot share a 3-part name with
any other structure in the RSD file).
This name is referenced in a case
sensitive manner to be consistent with
other relational structures.

Mar. 3, 2005

-continued

Tag Card Comment

Sub-Elements
The sub-elements are constrained
by the following content model:

BasedOn 0-1 BasedOn references an existing Table
or View. The BasedOn serves as the
basis for the CustomTable’s columns,
relationships, and is used to
auto-generate commands where
appropriate. The relational structure
that the CustomTable is BasedOn is
resolved using one, two, or three

part names.

Container elements for explicitly
defined Columns in the Custom Table.
By definition these columns are

simply abstractions for procedure
parameters or result columns so

they only allow a name and a type

to be specified.

This is meant to be a filter over

the set that is exposed by the
CustomTable. Condition can be used
independently of the QueryCommand or
in conjunction with the QueryCommand.
If the predicate specified in

the Condition can be composed with
the QueryCommand, the CustomTable can
be generated on the server, however in
particular cases (Inline Commands,
Stored Procedures) the predicate may
be applied on the client.

Command instance for querying the
source. Multiple QueryCommand scenario
is multiple StoredProcedures or UDFs
taking different parameter types but
returning the same result set (e.g.,
sp__GetCustByld, sp__GetCustByName,
etc.).

Command instance for inserting data
into the source.

Command instance for updating data

of the source.

Command instance for deleting data
from the source.

This is the key that is used to

uniquely identify relational instances.
This is a logical key, and overrides

any CustomKey defined by the structure
that the Custom Table is BasedOn. If

a CustomKey is not defined and

the Custom Table is BasedOn a table
with a PrimaryKey the CustomKey will
automatically inherit the PrimaryKey.

Columns 0-1

Condition 0+

QueryCommand 0-N

InsertCommand 0-1
UpdateCommand 0-1
DeleteCommand 0-1

CustomKey 0-1

[0215] 3. BasedOn Structure

Attributes
Tag Card Comment
Name Req String representing the name of the

relational structure that the
CustomTable is BasedOn. BasedOn can
only reference a Table or View

using a 1, 2, or 3-part name. Since
Tables and Views share a common
namespace within a schema it is not
necessary to have an additional type
attribute.

