US 2005/0050069 Al

-continued

Attributes

Tag Card Comment

AutoCommands Opt When set to true, allows the mapping
framework to autogenerate SQL for
Command instances that are absent. In
the case of Views, it is assumed that
the user has implemented the view with
triggers if necessary appropriately on
the server. When set to false, absent
commands are treated as “disabled”.

Default is “false.”

[0216] Sub-Elements

[0217]
[0218]

[0219] The BasedOn structure provides a shortcut so that
the CustomTable can inherit its Column definitions from an
existing structure rather than listing them explicitly. The
BasedOn structure is used to automatically generate any
Command instances that are not explicitly overridden by the
user. A CustomTable that is BasedOn inherits the Relation-
ships that are defined in the structure on which it is based.
These Relationships can be referred to by name in a Rela-
tionshipMap as if the CustomTable were the base relational
structure.

There are no sub-elements for this type.

BasedOn Semantics

[0220] BasedOn also gives the user control over the
semantics of missing Command instances. When AutoCom-
mands is “false” specific Command instances that are not
explicitly overridden are “disabled”.

[0221] 4. Columns

[0222] There are two types of Columns: Columns that are
inherited via BasedOn and Columns that are explicitly
declared. BasedOn Columns are identical to the columns
that are specified for a physical table or view, however the
user will never actually see the syntax for these columns in
the context of the Custom Table. The relevant point is that
when AutoCommands is equal to true, the SQL that is
generated is identical to the SQL that would be generated
against the Base Table so the semantics of the additional
annotations (such as default values, AutoIncrement, Rea-
dOnly, and AllowDBNull must be preserved).

[0223] Explicit Columns are explicitly declared columns
in the CustomTable, and are abstractions for a Command
procedure parameters and/or result columns. Because these
are not physical columns on a table, they do not allow
additional annotations such as Autolncrement, Read-Only,
etc. They only allow a name and type. In cases where
parameters to a routine are declared explicitly (Stored Pro-
cedures, UDFs) the type of the column is convertible to the
type of the parameter. In the Inline case (no declarative
parameters) the type of the column is assumed to be the type
of the parameter.

[0224] If a BasedOn is also specified these Columns are
appended to the BasedOn columns as “Extended Columns”.
Extended columns can simplify scenarios that fall into the
“Single Complex Mapping” scenario where one (or more)

15

Mar. 3, 2005

commands may have more columns than the BasedOn
structure. Any auto-generated commands use only the Base-
dOn columns, while Referenced or Inline commands use
BasedOn columns plus the ExtendedColumns. It is up to the
Command author to perform the appropriate bindings (if
default binding is not sufficient).

[0225] 5. Condition Element

[0226] The Condition element is a shorthand notation for
a simple Inline QueryCommand with the additional property
that the value used in the predicate is expressed declaratively
in the syntax and can be exposed to the Target domain via
the mapping interface. The scenario in particular that
requires this functionality (aside from being a nice shorthand
for the user) is an inheritance scenario where multiple types
in an inheritance hierarchy map to the same physical table,
and on read they want to map to a particular view of that
table.

Attributes
Tag Card Comment
Column Req This must be a column in the scope of the
CustomTable on which this condition is applied
Value Req The literal value to add to the predicate

[0227] Additional operators can be supported by adding an
“Operator” attribute to the Condition with the “=" operator
as the default for backwards compatibility. In addition, if
multiple Conditions are specified they are combined using
the AND operator.

[0228] 6. Commands (Query, Insert, Update, Delete)

[0229] Commands are where the user can customize
which relational structure or inline SQL is used to perform
each of the CRUD operations. The structure of Commands
assumes that the most common CustomTable scenarios will
override CUD Command instance by referencing database
procedures and/or functions (rather than inline SQL), “inlin-
ing” is a specialized behavior. InlineCommands are an
optional child element of the other Command types to
reduce confusion in the common case by separating meta-
data that only applies to the Inline scenario.

[0230] Query, Insert, and Update Commands can return
Result Sets and Output Parameters. In order for OutputPa-
rameters to be surfaced in the target domain they must be
bound to a custom table column that participates in a
FieldMap. In the QueryCase, the value of the output param-
eter is copied to every row in the result set. Since Insert and
Update only return at most one row in the Result Set the
value of the output parameter is treated just like a column
value.

[0231] Because Output Parameters are treated as though
they are part of the row(s) being returned from the Com-
mand, a result column cannot bind to the same Custom Table
Column as an Out or In/Out Parameter.



