US 2005/0050069 Al

[0253] Sub-Elements

[0254]
[0255]

[0256] The Default Binding feature is intended to provide
a syntactical shortcut to users so that when the names of the
Custom Table column match with the underlying parameter
and/or result column name then the system behaves as if the
binding is present as a Parameter name=CustomColumn
name binding or ResultColumn name=CustomColumn
name binding. The Default Binding feature does not in any
way alter the semantics of what it means for a parameter or
column binding to be present (or absent) in any given
scenario, but is simply a mechanism for attempting to infer
the appropriate bindings. Default binding is on by default
and can be disabled per command.

[0257] Default Binding with Explicit Metadata. When
there is explicit metadata (compile-time information) for
how many parameters or result columns should be expecting
for a given command, the exact number of default bindings
can be created up to the number of parameters or columns
defined on the procedure or routine. The following table
summarizes which command types for which explicit com-
pile-time parameter/column information exists.

There are no sub-clements.

Parameter & Column Binding Semantics

Parameters Column
User-Defined Functions Yes Yes
Stored Procedures Yes No
Inline SQL No No

[0258] When Default Binding is turned on, the mapping
framework creates a binding for each column in the custom
table to the appropriately named parameter and/or column in
the command. When metadata is available, an explicit
binding is assumed to be a partial binding, and the system
will attempt to apply default binding to any remaining
columns on the Custom table. For example, consider the
CustomTable for Orders which is defined as (oid nchar(10),
odate date, comments nvarchar(max)). The InsertCommand
for the Orders table has been overridden to reference
sp_OrderInsert(@orderid nchar(10), odate date, comments
nvarchar(max)). With Default Binding turned on and no
ParameterBindings explicitly specified, the mapping frame-
work would generate two bindings: one for odate and one for
comments. The user could then specify an explicit binding
from oid to orderid so that all three parameters are bound.

[0259] Default Binding without Explicit Metadata. In
cases where no declarative information about parameters
and/or columns is available, the system will generate a
parameter and a column binding for each column in the
custom table. This may result in over-binding where there
are more custom table columns than parameters in a proce-
dure or columns in a result set.

[0260] Partial Binding is still supported in this scenario, so
in every case where Default Binding has not been disabled
there will be one parameter binding and one column binding
for each column in the custom table.

[0261] The user can turn-off Default Binding explicitly
and specify all of the bindings explicitly.

Mar. 3, 2005

[0262] Binding Semantics

[0263] The expected behavior is capable of being defined
when the custom table has more or less bindings than the
input parameters to a procedure or the result columns to
output parameters for a particular command. Where the
CustomTable is wider than the Query Result Set, this
scenario is designed to accommodate write-only fields (e.g.,
time of update, or userid doing the update). The mapped
columns on the CustomTable that are referenced by a
FieldMap, but not contained in the ResultSet, are treated as
if the return is null. The target domain defines what the
appropriate behavior is (null behavior for XML and default
value form constructor in Objects).

[0264] UDF Scenario

[0265] In a UDF scenario, the appropriate number of
columns is always selected from the UDF result set because
compile time metadata allows formulation of queries prop-
erly. If the custom table is still wider than the UDF result set,
the null behavior specified above will be executed.

[0266] Inline SQL Scenario

[0267] In this scenario if the user has disabled default
binding and properly listed the columns to be returned from
the SQL statement, the behavior is identical to the UDF
scenario. If the user is relying on default bindings and the
custom table is wider than the result set, columns are
selected that do not exist resulting in a runtime error.

[0268] CustomTable Narrower than Query Result Set

[0269] In this scenario, the user is accessing a UDF or
StoredProcedure that cannot be altered, but which returns
values which are not being used in the customer’s mapping
application. This is not an error case, and the unbound/
unmapped values are ignored.

[0270] This scenario is unlikely in the Inline case because
only the result columns that are bound to custom table
columns will be selected.

[0271] CustomTable Wider than Input Parameter Set for
CUD

[0272] In the update case, Custom columns that are not
bound to columns or parameters, are ignored. It is assumed
that these are read-only fields and/or not required for execu-
tion of the command (particularly true for Delete commands
which may only take the key).

[0273] Inthe Stored Procedure case, the number of param-
eters is always known and declared so over-binding never
occurs. A compile time error can be provided if the user
attempts to explicitly bind to a parameter that does not exist.

[0274] In the Inline SQL scenario, over-binding of the
number of parameters that is used in the command may
occur. This is not an error and may simply result in extra
parameter values being sent across the wire.

[0275] CustomTable Narrower than Parameter Set

[0276] In this case the Command requires more param-
eters than are currently mapped from the user’s application.
If the Command has parameters that are not bound to any
column on the Custom Table, or the Column on the Custom
Table is not referenced by a FieldMap we will always pass



