US 2005/0050069 Al

the system, environment, and/or user from a set of obser-
vations as captured via events and/or data. Inference can be
employed to identify a specific context or action, or can
generate a probability distribution over states, for example.
The inference can be probabilistic-that is, the computation
of a probability distribution over states of interest based on
a consideration of data and events. Inference can also refer
to techniques employed for composing higher-level events
from a set of events and/or data. Such inference results in the
construction of new events or actions from a set of observed
events and/or stored event data, whether or not the events are
correlated in close temporal proximity, and whether the
events and data come from one or several event and data
sources.

[0020] Referring now to FIG. 1, there is illustrated a
general block diagram of a system of the present invention.
The present invention provides the capability of allowing a
user to work with a representative structure of a relational
database 100 even though remote therefrom and discon-
nected. Such a scenario is common in that the user may be
denied access rights and/or privileges to the relational data-
base 100 or even to a network on which the database is
disposed.

[0021] The disclosed architecture addresses the develop-
ment of a Relational Schema Definition (RSD) language
component 102 that generates an RSD file 104 that repre-
sents the complete structure and data of the relational
database from which it is derived.

[0022] The RSD file 104 can then be made accessible to a
user instead of the database 100 itself. This facilitates the
user working with the database 100 indirectly via the RSD
file 104 while traveling or in any scenario where the user is
disconnected from the database 100 (e.g., the database is
offline). The location of the RSD file 104 may be anywhere,
e.g., in this embodiment, local to the relational database 100,
such that the user can be given access to it. Of course, the
user may be required to login to the network and/or the
database 100 to gain access to the file 104, or may be given
free access to the file 104. This implementation is at the
discretion of the user.

[0023] The disclosed RSD language format is based upon
an XML (eXtensible Markup Language) that is used to
represent the relational schema. However, as indicated here-
inabove, in lieu of XML, the relational schema can be
represented with an alternative declarative language. The
RSD component 102 includes a declarative, implementa-
tion-neutral format such that after relational database meta-
data is obtained, the RSD file 104 can easily be generated,
stored, and used by applications to regenerate the relational
schema of the database 100. Thus, the disclosed architecture
facilitates use of the RSD file 104 in a remote and discon-
nected environment such that a user can take the RSD file
104 offline, and use the file 104 to regenerate the relational
database 100 in its entirety for processing, instead of having
to maintain a connection to the relational database 100 in
order to access its contents.

[0024] Databases and XML offer complementary func-
tionality for storing data. Databases store data for efficient
retrieval, whereas XML offers an easy information exchange
that enables interoperability between applications. To take
advantage of XML features, database tables can be con-
verted into XML documents. XML tools can be employed

Mar. 3, 2005

with such documents for further processing. XML docu-
ments can be presented as, for example, HTML (HyperText
Markup Language) pages with XSLT (Extensible Stylesheet
Language Transformation) stylesheets, can be searched with
XML-based query languages such as XQuery (XML Query
Language), can be used as a data-exchange format, and so
on. For processing XML documents, XML tools can work
with any suitable API, e.g., a DOM API ((Document Object
Module Application Programming Interface). Thus, XML
tools can be used to treat databases as if they were XML
documents. This way, the need to convert a database is
obviated.

[0025] Tt is preferable to have a file in a non-procedural
declarative format that describes the schema of the relational
database that is understandable by applications. It is written
in the XML format and XML syntax, and consequently, is
easy to parse, easy to load into an XML parsing API (e.g.,
DOM), and easy to understand.

[0026] The RSD language 102 also facilitates moving (or
mapping) data between the relational database 100 and an
Object component 106 and/or an XML component 108 using
a mapping component 10. This is accommodated by using a
declarative means rather than a conventional procedural
mechanism (e.g., executing C++ code against a result set
abstraction to generate an object or an XML structure/
component). The capability to map data from one data
model to a different data model is a desirable operation in
great demand with data environments of today. That is, data
environments that are diverse, and employ a wide range of
mechanisms and mediums for persisting and accessing data.
With respect to Object data, XML data, and Relational
databases, the means to map data between each of these
different data structures is important, since users are con-
tinually modifying their data storage schemas, mediums, and
processes.

[0027] Thus, there is provided the relational database 100
having a relational schema therein represented in the form of
metadata, and from which the metadata can be retrieved by
the RSD component 102 for generating the RSD file 104.
The RSD language component 102 prepares the database
data for mapping to another data model via the mapping
component 104. The mapping component 104 can then map
the data to at least the Object component 106 and/or the
XML component 108. Note, however, that the RSD com-
ponent 102 can be used in conjunction with the mapping
component 104 to map relational data to an arbitrary
domain.

[0028] The use of an Object Schema Definition (OSD)
language component 1112 to process Object data 114 for use
by the XML component 108 and a Relational component
116, and an XSD language component 118 to process XML
data 120 for use by the Object component 106 and the
Relational component 1116, are not part of this description,
as indicated by dotted lines. Note that the particular source
data (100, 114, and 120) and the associated language (102,
112, and 118) are not restricted to data transformation to a
different target component (106, 108, and 116). That is, a
scenario can exist where the source relational database 110
can be mapped to a target relational database (the relational
component 116) having a different relational structure. Thus,
the RSD language component 102 and mapping component
110 facilitate this process. Similarly, a scenario can exist



