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[0212] As described herein, the parameter optimization
has been carried out by using only a small dataset (4
recordings out of a total of 78 recordings). As indicated by
the results, the ability of the myoprocessors to accurately
predict the joint moment increased significantly with an
optimized set of internal parameters. While optimization on
a large set of data can yield better results during testing, it
may not be feasible to optimize the model on all the possible
upper limb movements. Note that even with a relatively
small database used for the optimization process, acceptable
overall performance is achievable. A small optimization
database yields a model able to perform reasonably well in
a broad range of conditions.

[0213] For elbow movements, the results (see Table III)
indicate that the integration of myoprocessors into a single
neuromuscular model of the arm is capable of predicting the
joint’s torque with an average E__ . of about 8.6 Nm when
parameters are not optimized. After optimization this pre-
diction is improved to an average E__ . of 3.8 Nm. Moreover,
after optimization, the percentage of time the absolute error
stays below 4 Nm (v),) is increased from an average 22% to
an average 73%. Also for the wrist movements the E___ is
more than halved after optimization and v, shows an
increase from 40% to 73%. The predictions for the elbow
joint movements showed better correlation (p) with the
reference torques compared to the wrist joint. In particular
wrist extension movements presented on average a lower p
after the optimization, even when all the other error mea-
sures consistently improved. An explanation for this phe-
nomenon can be provided by considering that finger flexors
and extensors significantly contribute to the wrist flexion-
extension torque but these muscles were not included in the
model. In the case of the elbow joint, all the relevant muscles
for the flexion-extension movement were included, which
may explain the better p.

[0214] Given the synergistic behavior of the physiological
muscles and the fact that some muscle[s] were not accessible
using noninvasive technique[s], the “maximum endurance
of musculoskeletal function™ criterion has been used for
predicting the contribution of the BRA muscle. This tech-
nique can be extended beyond its current use to allow further
reduction in the number of sEMG electrodes required for a
satisfactory torque prediction.

[0215] Different myoprocessors are able to model muscles
attached to the skeleton in different ways. Modeling more
complicated cases in which the muscle wraps around several
anatomical structures (multiple obstacles) requires more
computational power than simpler conditions (single
obstacle). By accounting for these constraints, myoproces-
sor complexity can be shaped to match the computational
power available. One example allows the 12 myoprocessors
to run simultaneously in real time with a maximum TET
below 400 ps. One example can include approximately 20
myoprocessors modeling muscles of wrist, elbow, and
shoulder joints and able to meet the real-time requirement of
the exoskeleton main control loop (computational interval of
1000 ps).

[0216] The myoprocessor described herein provides a
good balance between complexity and performance. Along
with GAs for the optimization of the internal parameters for
a specific user, an ensemble of myoprocessors can be used
for an HMI that operates in real-time conditions.
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[0217] The myoprocessor is a muscle model that performs
real time processing of input signals, including the muscle
activation level and joint kinematics, in order to predict the
muscle force or the moments generated by a synergetic
group of muscles e.g. flexor or extensor. The muscle acti-
vation level is defined as the percentage of the neural activity
of the muscle during maximal isometric voluntary contrac-
tion. The algorithm for evaluating the normalized muscle
activation level (FIG. 12) can be used in the field of
biomechanics and it is digitally implemented into the real-
time control system. The algorithm includes: (i) a high-pass
filter for filtering low frequency artifacts associated with the
fact that the muscles are moving during their contraction; (ii)
a full wave rectifier; (iii) a low-pass filter for calculating the
signal’s envelope and; (iv) signal normalization mapping the
signal into the <0-1> range.

[0218] The myoprocessor processes the muscle’s neural
activation levels along with the joint kinematics to predict
the muscle force (or moment with respect to a specific joint).
This prediction is used by the exoskeleton system to gen-
erate the appropriate joint torque to assist the operator.

[0219] In one example, the I/O signals are used to identify
the internal parameters of the both the Hill model (HM) and
the artificial neural network (ANN). In terms of the HM both
the force velocity (F-V) and the force length (F-L) function
for various muscle activation can be identified. In addition
to the HM, using the same I/O signals, a two layer ANN can
be trained based on the data from, for example, 5 subjects.

IV. VARIOUS APPLICATIONS

[0220] The exoskeleton is an external structural mecha-
nism with joints and links corresponding to those of the
human body. Worn by the human, the exoskeleton transmits
torques from proximally located actuators through rigid
exoskeletal links to the human joints. The control algorithm
used to operate the device can be configured to implement
different modes of operations, including, for example, the
following four: (1) a therapeutic and diagnostics device for
physiotherapy, (2) an assistive (orthotic) device for human
power amplifications, (3) a haptic device in virtual reality
simulation, and (4) a master device for teleoperation.

[0221] The exoskeleton of the present subject matter can
be controlled by a stroke patient, for example, while per-
forming task-oriented occupational therapy activities in a
virtual reality (VR) environment.

[0222] In one example, the present subject matter includes
hand exoskeletons, each having 9-DOF which enable dex-
terous and power grasping.

[0223] According to one example, virtual reality (VR), or
virtual environment (VE) technology provides an immersed
experience typically involving audio and visual feedback
perception for the user. Robotic devices can apply forces to
a user through a mechanical interface and can therefore add
the sense of touch (haptics) to the experience. The combi-
nation of audio-visual and force feedback enables the cre-
ation of detail rich, engaging virtual environments.

[0224] 1In one example, a computer operable program is
configured for establishing and managing a virtual coupling
between a haptic-configured exoskeleton device and a vir-
tual environment or virtual reality. One example includes a
virtual representation of a human body along with two fully



