US 2004/0123273 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates the validation of a computer
application having class and interface definitions.

[0014] FIG. 2 is a conceptual block diagram illustrating
the validation of a program at the language-independent
level and the language-dependent level.

[0015] FIG. 3A is a flow diagram illustrating the valida-
tion of a computer program implemented using a compiler-
language section.

[0016] FIG. 3B is a flow diagram illustrating the valida-
tion of a computer program implemented using a compiler-
language section and a script code section.

[0017] FIG. 4 illustrates the validation of a computer
program having a compiler-language section and a script
code section.

[0018] FIG. 5 illustrates the use of definition and imple-
mentation modules to validate a program and generate
Hypertext Markup Language (HTML) code.

Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0019] As shown in FIG. 1, in one implementation of the
invention, tree structures are used to represent a computer
program. These representations are used to generate and
validate one or more executable programs, as will be
described. The representations can include a tree structure
defining the implementation modules, in this particular case,
classes to be implemented 100, and a tree structure defining
the definition modules, in this particular case, the associated
interfaces 105. It is advantageous to define the implemen-
tation modules and the definition modules using a language-
independent representation. A anguage-independent repre-
sentation is not restricted to any particular programming
language used to implement an executable program. In one
exemplary implementation, the implementation modules
and the definition modules can be specified in a language
that can be used as a meta-language, e.g., Extensible Markup
Language (XML). Extended Backus-Naur Form (EBNF),
Abstract Syntax Notation One (ASN.1), or LISP.

[0020] The XML descriptions of the interfaces and classes
can be used to generate executable programs, for example,
by using an Extensible Stylesheet Language (XSL) style
sheet 115 in conjunction with an XSL processor 110 to
generate program implementation code 120. The executable
programs are language-dependent representations specific to
a particular programming language used to implement the
programs. XSL includes two parts: a language for trans-
forming XML documents, and an XML vocabulary for
specifying formatting semantics. An XSL style sheet speci-
fies the presentation of a class of XML documents by
describing how an instance of the class is transformed into
an XML document that uses the formatting vocabulary.
Other technologies, e.g., the Apache Velocity template
engine, can be used in place of XSL.

[0021] The program described by the interfaces and
classes can be validated at two levels. On the language-
independent or XML level, a syntax check is performed for
the interface description and the implementation class

Jun. 24, 2004

description. On the language-dependent level, to the extent
that the generated implementation code can be compiled, the
interface and class definitions can be validated by compiling
the code. In this case, the compiler 125 verifies the class and
interface definitions by performing usage and implementa-
tion checks. Usage checks verify that a customer class only
uses interfaces that have been promised by a provider class.
Implementation checks verify that the implementation of a
provider class provides all the promised interfaces.

[0022] FIG. 2 is a conceptual block diagram illustrating
the validation of a program at the language-independent
level and the language-dependent level. As described above,
a definition module 200 and an implementation module 205
representing the program are received. In one implementa-
tion, the computer program can be represented using more
than one definition module 200 and/or more than one
implementation module 205. The implementation module
205 defines the classes to be implemented by the program
and the definition module 200 defines the associated inter-
faces. The validation at the language-independent level is
performed as a syntax check for the definition module 200
and the implementation module 205. The implementation
module 205 is used to generate the classes 215 and the
definition module 200 is used to generate the associated
interfaces 210. Language-dependent validation of the
classes 215 and interfaces 210 generated from the language-
independent descriptions can be performed by compiling the
classes 215 and the interfaces 210 using a compiler 125. The
compiler 125 verifies the class and interface definition by
performing usage and implementation checks on the lan-
guage-dependent representation of the classes 215 and the
interfaces 210.

[0023] FIG. 3A is a flow diagram illustrating the valida-
tion of a computer program implemented using a compiler-
language section. A language-independent description of a
computer program is received (step 300). As described
above, the language-independent description can include
implementation modules 205 and definition modules 200
describing the computer program. The language-indepen-
dent description is validated (step 310) and a syntax check
is performed for the implementation modules 205 and the
definition modules 200 (step 312). The language-indepen-
dent description is used to generate a language-dependent
program (step 320), e.g., by generating a program imple-
mentation using a particular programming language. The
language-dependent program is validated (step 330) and
usage and semantics checks are performed by compiling the
generated interfaces and classes (step 332).

[0024] FIG. 3B is a flow diagram illustrating the valida-
tion of a computer program implemented using a compiler-
language section and a script language section. As discussed
above, a language-independent representation of a computer
program is received (step 300), and the language-indepen-
dent representation is validated (step 310) by performing a
syntax check for the implementation modules 205 and
definition modules 200 (step 312). A language-dependent
representation of the program is generated (step 320), and
the generated language-dependent representation is vali-
dated (step 330). The generated computer program includes
a compiler-language section and a script code section. As
described above, the validation of the generated compiler-
language section includes usage and semantics checks per-
formed by compiling the generated interfaces 210 and



