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[0030] Atthis point the expanded set known signals K' (step
204) would be as follows:

K'={x %, %3 %011, 13,0V} formula #20

[0031] Represented in binary notation the new signals are
as follows:
#,=0000111111110000 formula #21
£,=0000000000110011 formula #22
#;=0101010101100110 formula #23
#,=0000010101100000 formula #24

[0032] Performing steps 206-212 for formula 2 yields the
following formula for y, that only requires two multiplica-
tions:

Vo =X+ (XX X3) (X3+X,) formula #25

[0033] These steps may be repeated to obtain simplified
versions of'y, and y, as shown in the straight line program of
formulas 26-41 below.

1 =X formula #26
H=X;%3 formula #27
13 =X+ formula #28
1=t formula #29
Ya=XotHly formula #30
15=X3+X, formula #31
te=Xrthr formula #32
t;=ts'ts formula #33
Vo=xg formula #34
tg=X3+Y formula #35
to=t3+y> formula #36
tio=¥4to formula #37
Yi=tiots formula #38
111 =+ formula #39
11=¥atyy formula #40
Y3Thotl formula #41
[0034] As described above, if one used formulas 1-4 for

calculating y, -y, separately, 18 multiplications (AND opera-
tions) and 16 additions (XOR operations) would be required.
However, using the straight line program for calculating y, -y,
shown in formulas 26-41, only 5 multiplications and 11 addi-
tions are required. So, in the example of formulas 1-4 apply-
ing method 200 can yield a reduction of 13 multiplications
and 5 additions.

[0035] FIG. 3 schematically illustrates the method 300 of
reducing a quantity of XOR gates in greater detail. As
described above, the method 300 is applied to a second por-
tion of a combinational circuit that contains only XOR gates,
also known as a linear portion of the combinational circuit.
Suppose a linear portion of the combinational circuit can be
represented by formulas 42-47 as shown below (step 302):
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Zo=WotW +W5 formula #42
Z =WiHWatW, formula #43
Zy=WotWotWa+W, formula #44
Z3=WiHWot W3 formula #45
Zy= Wt W W3 formula #46
Z5=WrtWa+Wy formula #47

[0036] Formulas 42-47 for z,-z can also be represented in
the form of matrix M shown in formula 48 (shown below),
with each row of M representing one of the formulas for z,-zs.
For example, the first row of M corresponds to z,, and
includes a “1” for each of w,, w, and w, (which are all
included in formula 42) and a “0” for each of w; and w,
(neither of which are present in formula 42).

11100 formula #48
01011
10111
M=
01110
11010
01111
[0037] Ifeach of formulas 7,-z5 were calculated separately

from scratch, 14 additions (XOR operations) would be
required. One may apply the method 300 to the matrix M to
see if a simplified short line program to solve for 7,-z5 using
a reduced number of additions can be determined by using
formula 49 below as a reference.

Aw)y=Mw
[0038]

formula #49

where M is the matrix of formula 48; and

[0039] w is a value in the input vector
[0040] An input vector S is shown below in formula 50 and
includes the values shown in formulas 51-55. The vector S
acts as a set of signals to serve as a basis for the method 200
(step 304). As shown in formulas 51-55, each of the values
Wo-W, is a row of an identity matrix.

S={wo,wi, Wy, W3,w,} formula #50
wg=10000 formula #51
w;=01000 formula #52
w,=00100 formula #53
w3=00010 formula #54
w,=00001 formula #55
[0041] The following distance vector is then determined
(step 306), as shown in formula 56:
D=223223] formula #56
[0042] Each value in the distance vector D corresponds to a

quantity of additions needed to compute a z, value. For
example, computing 7z, requires 2 additions, computing z,
requires 2 additions, computing z, requires 3 additions, etc.

[0043] Two basis vectors are then chosen (step 308) whose
sum, when added to the basis D minimizes the sum of the new
distances. In one example w, +w; may be selected, as shown



