US 2005/0060687 Al

METHOD AND APPARATUS FOR DOCUMENTING
AND DESCRIBING OBJECT ORIENTED
PROGRAMMING LOGIC

FIELD OF THE INVENTION

[0001] The invention pertains to the documentation and
description of object oriented programming logic, particu-
larly in connection with fourth and fifth generation object
oriented programming languages.

BACKGROUND OF THE INVENTION

[0002] Traditionally, a computer program was viewed as a
logical procedure that takes input data, processes it, and
produces output data. The process of developing a software
routine was seen as a process of determining how to write
the logic to achieve the desired actions. Object oriented
programming (OOP) was a revolutionary concept that
changed the paradigm for computer software development
by taking the view that computer programming should be
organized around objects rather than actions, i.e., data rather
than logic. Today, most software development is performed
in object oriented programming languages (OOPLs). C++
and Java are among the most popular object oriented pro-
gramming languages today. The Java programming lan-
guage is designed especially for use in distributed applica-
tions on corporate networks and the Internet.

[0003] In object oriented programming, an object is any
data structure with a defined intent that is capable of
executing a logical sequence of commands. An object can
represent virtually anything, such as a person (e.g.,
described by name, address and/or other information) or a
room (the properties of which can be described by attributes,
such as its length, width, furnishings, wall color, floor type,
etc.) or elements of a graphical user interface (GUI) such as
buttons, scroll bars, pull down menus, windows, etc.

[0004] In object oriented programming, the first step is to
identify all objects that one may wish to manipulate and how
they relate to each other. This process is known as data
modeling. The actual data that defines a particular object
such as the aforementioned name, address, length, width,
color, furnishings, etc., are called its attributes. An attribute
essentially is a changeable property or characteristic of an
object that can be set to different values. Once an object has
been identified, it is generalized as a “class™ of object. The
class defines the kind of data (e.g., attributes) that objects of
that class contain and any logic sequences, e.g., methods,
that can manipulate it. Accordingly, a class basically is a
template definition of the methods and variables/attributes of
a particular type of object. Thus, an object is a specific
instance of a class, i.e., it contains actual attribute values
instead of variables. Each distinct logic sequence is known
as a method. A method is a programmed procedure that is
defined as part of a class and included in any object of that
class. A class (and thus an object) can have more than one
method. A method in an object can only have access to the
data known to that object, which ensures data integrity
among the set of objects in an application. A method can be
re-used in multiple objects.

[0005] The object (sometimes called a class instance) is
what is run on a computer. Its methods provide computer
instructions and the class object characteristics provide
relevant data. A human operator communicates with

Mar. 17, 2005

objects—and they communicate with each other—via well-
defined interfaces called messages.

[0006] In object oriented programming, an event is any-
thing that occurs that causes a piece of code to be executed.
Accordingly, an event can be a human user input event, such
as clicking on a button or a hyperlink, or program driven,
such as when one piece of code performs some function that
results in another piece of code being executed.

[0007] The concept of a data class makes it possible to
define subclasses of data objects that share some or all of the
main class characteristics. Called inheritance, this property
of OOP forces a more thorough data analysis, reduces
development time, and insures more accurate coding.

[0008] Software programs can be represented at many
levels of detail, such as object code, source code, and higher
levels of representation. Object code (or machine code)
essentially is numerical data that the actual processor under-
stands. Object code is what is known as a first-generation
programming language, or 1GL. Assembly language
(example instruction: add 12, 8) is called second-generation
language or 2GL. 3GL or third-generation language is a high
level programming language, such as PL/I, C, or Java and
may or may not be an OOPL. A compiler converts the
statements of the specific high-level programming language
into machine language. A 4GL or fourth-generation lan-
guage is designed to be closer to natural language than a
3GL language. SGL or fifth-generation language is program-
ming that uses a visual or graphical development interface to
create source language that is usually compiled with a 3GL
or 4GL language compiler.

[0009] Some companies, including International Business
Machines Corporation, make 5GL visual programming
products for developing applications in Java, for example.
Visual programming allows a software developer to easily
envision object oriented programming class hierarchies and
drag and drop icons to assemble program components.

[0010] In the field of software development, a software
developer, systems analyst, or program architect (hereinafter
“architect”) typically prepares a specification describing at a
higher level than the actual code level the software that is to
be developed and provides that information to a programmer
(or coder) who writes the actual software in source code. In
traditional (i.e., non-OOP) programming, a software archi-
tect may have described the desired software in terms of a
flow chart which comprises a series of steps (i.e., actions) in
some sequence. Flow charts, however, are not particularly
well-adapted to representing object oriented programming
because, as previously mentioned, object oriented program-
ming focuses on objects rather than actions.

[0011] Software tools particularly adapted for object ori-
ented programming languages are available today that are
designed to allow a software architect to describe the
software at a high level so that the software architect can
work more efficiently by concentrating on the business or
other logic without getting bogged down in the actual
computer science of writing code.

[0012] However, the available methods and tools are not
as efficient as could be in terms of assisting a software
architect in defining, representing, and documenting OOP
applications, particularly applications developed to work in
a graphical user interface.



