US 2005/0060687 Al

[0030] 3. a static object; and
[0031] 4. a dynamic object.

[0032] An object can simultaneously be more than one of
these four types of objects. However, an object can be either
a static object or a dynamic object, but not both. As will
become clear from the discussion below, generally, an object
will either be static or dynamic. Furthermore, an object can
be either an object assigned to another object or an object
defined within another object but not both.

[0033] Referring now to FIG. 1, symbol 1 is used to
represent an application, project, or system type object
(hereinafter application). These three terms are intended to
define the same thing and are not intended to be three
different things. Within the relevant professional fields, these
terms are generally used interchangeably to refer to an
overall computer program. This symbol may be used to
represent the most general objects in a computer program.
For instance, it may be used to represent the overall pro-
gram. It also may be used to represent windows, reports,
menus, classes, and methods. An application object 1 is a
dynamic object and commonly will be neither defined within
another object or assigned to another object.

[0034] Symbol 2 is used to represent a window or form
type object such as a window in a graphical user interface.
(Note that, in the JAVA programming language, a window is
called a form.) In accordance with the terminology of the
present application, a window is a user interface that con-
tains a set of objects that can execute rules. A window
generally is in the top level of the user interface of an
application. A window object generally is a dynamic object
because, at a minimum, it will have another object defined
within or assigned to it. For example, even a window that
comprises nothing but a single graphic file still would be a
dynamic object in accordance with the terminology as
defined hereinabove. The graphic file, on the other hand,
would be a static object as it has no logic, rule, event, script
or other object assigned to it.

[0035] Merely as an example, in a business application for
an e-commerce retailers website, one class object may be
called “customer” wherein its attributes, methods and func-
tions define what information can be entered about a cus-
tomer of the retailer (e.g., name, address, telephone number
and what can be done with respect to a customer object, e.g.,
it can be added, deleted, or modified). A class object
generally will be a dynamic object. However, a class may
have only attributes and no methods, in which case it would
be static. A class generally will not be defined within another
object or assigned to another object.

[0036] Symbol 3 represents a menu-type object. It may be
used to represent a menu bar, a menu, an item in a menu, or
a menu option depending on the desired level of detail for
the diagram. A menu is a list of options and commands from
which a user can choose one option or command. Again,
anyone familiar with graphical user interface programming
languages such as Java and HTML is familiar with the
concept of menus, menu bars (a collection of menus) and
menu items or options. A menu-type object almost always is
a dynamic object and is an object assigned to another object.
For instance, an object menu does not depend on any other
object to exist, but in order for a menu to be useful in most
cases, it must be assigned to an object window.

Mar. 17, 2005

[0037] Symbol 4 represents function/procedure/method
type objects (hereinafter “methods”). A method is a well
known concept of object oriented programming languages
and, therefore, does not warrant a detailed discussion herein.
As will be discussed in greater detail below, a method
symbol in an OED of the present invention does not repre-
sent a call to a method. Instead, it represents the fact that the
method is available to the object to which it is assigned. A
method object is a dynamic object. Further, it is an object
assigned to another object. Particularly, it is not an object
defined within another object as it does not require another
object for its definition, but generally will be of no use unless
it is assigned to another object, such as an application (in
which case it can be available to any other object in the
application) or a window or a menu.

[0038] Symbol 5 represents an event script type object. An
event script is code that is executed when an event associ-
ated with an object (e.g., clicking on a button) occurs that
causes another piece of code to be run. Particularly, when the
event occurs, the event script is executed, which, in turn,
causes another module of code to run. Therefore, an event
script object is a dynamic object as well as an object
assigned to another object.

[0039] Symbol 6 represents a frame or report type object
(hereinafter “a frame object”). A frame object is an interface
used to display the results of a query, a formatted report, or
a set of fields used to accept input from a user. A frame is
usually defined within an object window and, therefore,
usually is an object defined within another object. Also, it is
a dynamic object. With brief reference to FIG. 2, which
shows a web page, the rectangular box within which the
information regarding various flight options is shown is a
frame. Particularly, it contains data which is retrieved from
a database as a result of a query. For example, in FIG. 2, the
query was to identify available flights from Rio de Janeiro
to New York City. Frames can be relatively complex objects.
Formatted data reports are presented within frames. The user
interfacing with the program can select data items within a
frame and such selections can lead to actions being taken
(e.g., an event script or method being executed).

[0040] Symbol 7 represents a class type object. A “class”
is a well known element of object oriented programming and
has previously been discussed herein and, therefore, will not
be described in detail. Briefly, it is a category of objects. A
class object defines a set of attributes, functions and methods
for objects of that class. It is a general definition of objects
of that class. As noted in the background section, a class
defines its elements, e.g., attributes, functions and methods,
as variables and an actual object is a particular instance of
a class.

[0041] Symbol 8 represents a button type object. It rep-
resents a button. Once again, button objects are well known
to anyone familiar with graphical user interfaces. Types of
buttons include option buttons, check buttons, and picture
buttons. A button is a dynamic object as it usually will have
an event script attached to it (i.e., something happens when
you click the button). Further, a button generally will be an
object defined within another object. Particularly, a button
generally will be of no use unless it is in a window.

[0042] Symbol 9 represents a data structure or record type
object. Again, the concept of a structure or record is well
known. It is a standard feature of the C++ programming



