US 2010/0088587 Al

various data object classes, the attributes and the relationships
between them operated by the application, and a document
generated by the application is an instance of the data model
of the application.

[0037] FIG. 3 shows an example of data models of different
versions of an application. As shown, by comparing the data
model of version 2.0 with the data model of version 1.0, it can
be seen that the class Person is renamed as Individual, the
attribute gender is renamed as sex, and the type of the attribute
grade, Elnt, is changed into Grade, additionally a new class,
Grade, is added. By comparing the data model of version 3.0
with the data model of version 2.0, it can be seen that the
attributes of the class School, grades and courses, are added,
and their types are designated as classes Grade and Course,
respectively, and the attribute salary of the class School is
deleted; in addition, a new class, Course, is added.

[0038] During operation, the application can create a docu-
ment according to its data model, that is, forming an instance
of the data model in the memory, namely, an object graph
conforming to the data model; and store the document on a
disk, that is, serializing the object graph in the memory to a
disk file; or load the document from the disk, that is, read the
contents of the disk file into the memory and parse the docu-
ment contents according to the data model, so as to form an
object graph conforming to the data model in the memory and
display the object graph in an user interface (UI).

[0039] In order for the application to open, read and parse
the document contents correctly, the data model used by the
application when parsing the document contents must be
consistent with the data model used when the document is
generated and stored; otherwise, the document cannot be
opened, read or parsed, thus arising a compatibility problem.
FIG. 4 schematically shows an exemplary editor application
editing a document in a user interface and an object graph of
the document in the memory. FIG. 5 shows an exemplary data
model instance represented in XML format.

[0040] The data model of an application is usually
described using a formal model description language, e.g.,
UML, XSD, Ecore, etc. The model extractor may use any one
of a plurality of methods known in the art to acquire data
models of different versions of an application. For example, a
reverse engineering technique can be used to automatically
extract the data model of an application from the source code
of'the application or, for those applications which were devel-
oped based on existing data models, the data models of the
applications can also be acquired directly.

[0041] The model comparator can use a model comparison
technique known in the art to compare the data models of
different versions, and automatically generate a differentia-
tion model representing the differences between the data
models of different versions. For example, an existing model
weaving tool, e.g., AMW, can be used to generate the differ-
entiation model. Additionally or alternatively, the user can
manually modify or create a differentiation model.

[0042] Forexample, modern model comparison techniques
generally use a “minimum edit-distance” hypothesis to find
the differences between two models; especially when the
number of different elements is very small as compared with
the number of total elements, these techniques work well.
However, there exist a few cases where the results generated
by such a method of automatically finding differences do not
reflect the truth. When an attribute “label” in an old data
model is deleted, and a new attribute “weight” is created in a
new data model, according to the principle of minimum edit-

Apr. 8, 2010

distance, the differentiation model will view “weight” as a
substitution for “label”, which is not correct. Therefore, the
model comparator may allow the user to modify or edit an
automatically generated differentiation model.

[0043] For example, with respect to a data model described
using UML, the model comparator may acquire the informa-
tion of adding, deleting or modifying various UML elements,
such as, Class, Attribute, Aggregation, Composition, and
Generalization between data models of different versions,
and record the information in a differentiation model. For
example, for the exemplary data models of version 1.0 and
version 2.0 shown in FIG. 3, a differentiation model including
the following information may be generated: 1) the class
“Person” was renamed as “Individual”; 2) the attribute “gen-
der” of the class “Person” was renamed as “sex”; 3) a class
“Grade” with an attribute “name” was added; 4) the type of
the attribute “grade”, “Elnt”, was modified as “Grade”.

[0044] The differentiation model may use any known data
structure in the art. As long as the differentiation model
includes the differences between document data models of
different versions so that it can be used for inter-version
document conversion, it is feasible. According to an embodi-
ment of the present invention, the conversion stack is any data
structure which includes differentiation models between
adjacent versions and verification models for verifying the
validity of documents.

[0045] The conversion module 202 for performing conver-
sion between documents of different versions of an applica-
tion by using the conversion stack 201 is further configured
for performing the following operations: obtaining a docu-
ment of a higher version; successively converting the docu-
ment of the higher version into zero, one or more documents
of'intermediate versions and a document of a lower version by
using one or more differentiation models between data mod-
els between the higher version and the lower version in the
conversion stack 201, and storing the document of the higher
version, and the zero, one or more documents of the interme-
diate versions between the higher version and the lower ver-
sion or relevant information therein (for example, informa-
tion lost when the document of one version is converted into
the document of another version); sending the document of
the low version to the application of the lower version, so as
to perform required modifications to the document of the
lower version by using the application of the lower version;
receiving the modified document of the lower version from
the application of the lower version; successively converting
the modified document of the lower version into zero, one or
more modified documents of intermediate versions and a
modified document of the higher version by using the one or
more differentiation models between the data models
between the higher version and the lower version in the con-
version stack 201, and by merging with the stored zero, one or
more documents of the intermediary versions between the
higher version and the lower version and the document of the
higher version or the relevant information therein by a merg-
ing module 204; wherein the apparatus 200 further optionally
includes a merging module 204 for merging zero, one or more
incomplete documents of intermediate versions and an
incomplete document of the higher version, which are suc-
cessively converted from the lower version of documents,
with the zero, one or more stored documents of the interme-
diate versions between the higher version and the lower ver-
sion and the stored document of the higher version or the
related information therein, so as to generate the zero, one or



