US 2002/0123992 A1l

[0043] A collection 300 of objects incorporating aspects of
the present invention is shown in FIG. 3. The collection 300
has a data object 302 which relates to the actual object
information. Additionally, the collection 300 has a meta
information object 304, which, in this particular example,
comprises general information including some standard
properties, such time or object size. In other embodiments,
the meta information object 304 may not include standard
properties, and instead the standard properties would be
stored in yet another object (not shown).

[0044] The collection 300 also has a version-specific prop-
erty 306 as shown in FIG. 3. The version-specific property
306 comprises three types of information. It has a meta
information section 308, which typically has a name for the
property such as the name of the third party application used
to create the property, and possibly other information, such
as the length of the property, its address location on the disk,
among others.

[0045] The version-specific property 306 also has a ver-
sion information section 310. The version information sec-
tion 310 comprises information related to the version of the
specific application that was used most recently to create the
version-specific property 306, such as the version of the
third party application used to create the property. That is,
since such version information may be relevant to the
program module that is evaluating the property, a section is
dedicated to this type of information.

[0046] The version-specific property 306 also comprises a
mask information section 312 which is used to provide
information to the server system as to what is a relevant
update. The mask information section 312 essentially dic-
tates to other applications or to the server system the
protocol or policy in which events may or may not invalidate
the version-specific property 306.

[0047] In a particular embodiment, if the version-specific
property 306 was created by a virus scan application, then
the meta information section 308 may hold the name of the
virus scan application used to create the version-specific
property 306. Additionally, the version information section
310 would include information related to the particular virus
definition file used when the version-specific property 306
was created. Version information in this particular instance
is important because virus scan applications are frequently
updated to include recently detected viruses. Therefore virus
scan applications should not only determine whether an

Sep. 5, 2002

object has been scanned previously, but whether it has been
scanned with an updated virus definition file.

[0048] With respect to the mask information section 312,
when a virus scan application creates the version-specific
property 306, the mask information section 312 may include
the specific events that would cause an invalidation of the
version-specific property 306, wherein the events may be
uniquely pertinent to a virus scan application. Such events
that may cause an invalidation of property 306 in this
particular instance may include modifying the data object
302, cither by adding new data or by erasing data. In other
embodiments, other predetermined events may cause the
invalidation of version-specific property, such as modifica-
tion of another property associated with the data object 302,
among others.

[0049] In this particular example, predetermined events
that may specifically not be included in the mask informa-
tion section 312 and therefore do not cause the version-
specific property to be invalidated may include read only
access events, changing the name of the object, or backing
up the object collection 300. Indeed, if the event does not
cause the version-specific property to be invalidated than the
property remains associated with the object 302, even in
such cases as when the name of the object is changed.

[0050] The version-specific property 306 is created by a
third party application, e.g., an application separate from the
particular object store. In creating the version-specific prop-
erty, the third party application supplies the name, version
and mask information to the server system, where the XML
object is stored. The server system then creates and associ-
ates the property with the particular data object. Alterna-
tively, the version specific property may be created and
stored on a remote computer system, as long as the property
is associated with the data object 302.

[0051] In an embodiment of the invention, the version
specific property is an extension of the HTTP, as part of
WebDAV, i.e., the World Wide Web Distributed Authoring
and Versioning protocol (DAV). In essence, the version-
specific property is a new type of DAV property and has the
same live/dead degree of freedom as other DAV properties,
i.e., where a live property is managed at a server and dead
property is managed at the client. In order to define a new
version specific property in DAV the document type defi-
nitions (DTD) shown in Table 1 may be implemented. Of
course these samples could also be written as schemas.

1 Name: versionspecificproperty
Namespace: DAV:
Purpose: Specifies that a property is version-specific and defines its characteristics.
Description: The versionspecificproperty XML element specifies when a version-
specific property is invalidated due to updates to the containing element and whether it
should be preserved in COPY operations. If this XML element is not included in the
request body then the server can assume that the property is not version-specific.
<!ELEMENT versionspecificproperty (copybehavior?, isreplicator?, invalidationrule?,

contents)>

2 Name: copybehavior
Namespace: DAV:
Purpose: Specifies whether the property should be preserved across a COPY

operation.

Description: The copybehavior XML element specifies whether a version-specific
property is preserved across a COPY operation or not. If this XML element is not
included in the request body then the property will be omitted in a COPY operation.



