US 2002/0123992 A1l

-continued

11

12

Name: nonversioned
Namespace: DAV:
Purpose: Used to indicate that an update to any property that is not version-specific in

the containing object should cause the property’s contents to be set to the empty string.

Description: The nonversioned XML element indicates that an update to any property
that is not version-specific should cause the version-specific property’s contents to be
set to the empty string. This includes both mutable and immutable properties.
<!ELEMENT nonversioned EMPTY>

Name: nonreplicator

Namespace: DAV:

Purpose: Used to indicate that an update to any property that is not a replicator class,
version-specific property in the containing object should cause the property’s contents
to be set to the empty string.

Description: The nonreplicator XML element indicates that an update to any property
that is not a replicator class, version-specific property should cause the version-specific
property’s contents to be set to the empty string. This includes both mutable and
immutable properties, as well as some version-specific properties. A replicator class,
version-specific property would likely choose this as its inclusionlist setting.

Sep. 5, 2002

<!ELEMENT nonreplicator EMPTY>
13 Name: exclusionlist
Namespace: DAV:

Purpose: Specifies a list of properties for which an update should not cause the

property’s contents should be set to the empty string.

Description: The exclusionlist XML element specifies the list of properties for which
an update should not cause the version-specific property’s contents to be set to the
empty string. The list can include the special keywords immutable, nonversioned, and
nonreplicator as well as a list of URIs of named properties. The version-specific
property itself is always considered to be a part of its own exclusion list. That is,
update to this property will never cause it to be invalidated. The exclusion list, if any,

has precedence over the inclusion list.

<!ELEMENT exclusionlist (updatetype, (immutable | nonversioned | nonreplicator

href+))>

[0052] In order to actually create a version specific prop-
erty, the third party application uses standard DAV mecha-
nisms, such as PROPPATCH, PUT, etc. These mechanisms
are described in more detail in the Appendix A. In alternative
embodiments, these version specific properties are created
using other methods.

[0053] Although the collection 300 is shown and
described as having only one version specific property, the
collection 300 may have other properties, including other
version specific properties as well. Indeed, several third
party applications may request that persistent state informa-
tion be in association with and thus numerous version
specific properties, such as property 306 may be created and
stored along with collection 300.

[0054] The exemplary physical environment having now
been discussed, the remaining part of this description section
will be devoted to a description of the operative modules
embodying aspects of the invention. The logical operations
of the various embodiments of the present invention are
implemented (1) as a sequence of computer implemented
steps or program modules running on a computing system
and/or (2) as interconnected hardware or logic modules
within the computing system. The implementation is a
matter of choice dependent on the performance requirements
of the computing system implementing the invention.
Accordingly, the logical operations making up the embodi-
ments of the present invention described herein are referred
to alternatively as operations, steps or modules.

[0055] FIG. 4 is a flow chart of the operational charac-
teristics related to accessing an object according to aspects
of the present invention. Prior to the beginning of flow 400
an object such as objects 204, 206, 208 or 210 shown in

FIG. 2 exists within an XML store, such as store 202 (FIG.
2). In an embodiment of the invention, once an object has
been created, then any attempt to access that object initiates
the flow 400 shown and described with respect to FIG. 4.
Indeed, process 400 begins with access attempt 402, wherein
the access attempt 402 relates to any read, execution, or
update to an object. The access attempt may be performed by
the third party application, such as application 224 (FIG. 2)
or by the services layer 236 (FIG. 2).

[0056] Following access attempt 402, determination act
404 determines whether the access is an invalidating access.
Determining whether or not an access is an invalidating
access involves an evaluation of mask information within
each version-specific property, assuming there is more than
one, of the particular object being accessed. Evaluating the
mask information provides what types of accesses to that
object require that the particular version-specific property
should be invalidated. Consequently, comparing the mask
information to the actual access attempt provides whether
the version-specific property should be invalidated. When
such a relevant-update access attempt is identified by deter-
mination act 404, flow branches YES to invalidate operation
406.

[0057] In an embodiment of the invention the version-
specific property is created and used by a virus-scan appli-
cation. In such a situation, determination act 404 determines
whether the access attempt is a relevant update access based
on a criteria set by the virus-scan application. That is, the
virus-scan application has predetermined what a relevant
update access is, such as whether the access attempt will
modify actual object data by changing old data or adding
new data. For example, a particular virus-scan application
may want its version-specific property to be invalidated

