US 2002/0123992 A1l

structure of data objects, such as data objects 204, 206, 208
and 210. Typically, the XML Store 202 also provides the
overall structure in which objects are named, stored and
organized. Additionally, the store provides the protocols for
accessing any object within the store 202. Although shown
in relation to an XML store, other data object configurations
or collections may incorporate the aspects of the present
invention. Data objects 204, 206, 208 and 210 are XML data
objects that represent actual file-type data. The objects 204,
206, 208 and 210 may be accessed and/or modified by a user
or another program module. Of course, the XML Store 202
may comprise many other objects as indicated by ellipses
223 and 225.

[0034] Typically, each data object 204, 206, 208 and 210
has some form of meta information object (not shown) that
is associated with each object, the meta information com-
prises information such as the author of the object, the time
the object was last accessed, among others. This meta
information may be stored as part of the data object or as part
of another object having a pointer or some other identifying
element that associates the meta information object with its
particular data object.

[0035] In addition to the meta information objects, a data
object may also be associated with a version-specific prop-
erty object, such as objects 220 and 222. Version specific
properties 220 and 222 are associated with data objects 208
and 210, respectively. The version-specific properties 220
and 222 comprise version-specific information and may be
invalidated by other events occurring with respect to the
objects 208 and 210 respectively.

[0036] The software environment 200 shown in FIG. 2
also illustrates the interaction of the XML Store 202 and
application programs, such as applications 224 and 226. In
one embodiment, application program 226 is a client appli-
cation program that operates on a client system apart from
a server system, which is the location of the XML Store 202.
In other embodiments, the application program, i.e., pro-
gram 224 may actually be part of the server system. Appli-
cations 224 and 226 interact with the XML store 202
through application program interfaces 228 and 230, respec-
tively. Additionally, the application interfaces 230 may
actually communicate with the XML store 202 through a
complex network, such as the Internet 232, according to
predefined protocols. Importantly, in the present invention
an application or program module, such as applications 224
and 226, communicates with the XML store 202 in one way
or another, to access data objects, such as objects 204, 206,
208 and 210 wherein the access may involve moving,
copying, deleting, reading, executing or updating the object,
among others.

[0037] Application programs 224 and 226 may access the
objects 204, 206, 208 and 210 through a layer of application
modules, i.e., the services layer 236. The services layer 236
may provide various functions, such as ensuring that an
object access request relates to an existing object, whether
the module making the request has permission to make and
perform the request, among others. This layer of interaction
236 is in addition to possible application program interfaces
228, 230 and possible operating system interfaces (not
shown) that may be part of the client or server computer
systems.

[0038] With respect to the version-specific properties 220
and 222, in an embodiment of the invention, application

Sep. 5, 2002

programs 224 and 226 may create and use the version-
specific properties 220 and 222 related to objects 208 and
210 respectively. Alternatively the services layer 236 may
create and use the version-specific properties. Once a ver-
sion-specific property has been created, another application
may access the property and decide to perform an operation
on the object based on the evaluation of the version-specific
property 220 or 222. Additionally, the other applications
may perform actions on a data object that may invalidate the
version-specific property thereby causing a different result
once an application tests for the existence of a valid version-
specific property.

[0039] In one particular example, the services layer 236
provides a virus-scan function that performs virus scanning
and cleaning functions each time an object, €.g., objects 204,
206, 208 or 210, is accessed by any other application or
module. To further expand the example, the application
program 224 may be a word processing application and the
objects 204, 206, 208 and 210 are word processing type
objects such as XML objects having specific text compo-
nents. In such a case, the virus scan program module, as part
of services layer 236, may actually be utilized to scan
objects that the word processing application 224 requests to
access. In this example, the virus scanner may create ver-
sion-specific properties, such as properties 220 and 222 for
objects that have been scanned for viruses. Therefore, the
next time a request is made by application 224 for one of the
objects 208 and 210, the virus scan application merely
identifies the existence of a valid version-specific property,
such as property 220 and 222, to determine whether another
scan operation is necessary. If a valid version-specific prop-
erty is identified, then no scan is necessary in this particular
example. Contrarily, if no version-specific property is iden-
tified, such as when object 204 or 206 are accessed, then the
virus scan application recognizes that these objects have
either not been scanned or have been modified since the time
when they were scanned.

[0040] Continuing with the virus-scan example, assuming
virus scan application, as part of services layer 236, scans
one of the objects 204 or 206, a new version-specific
property (not shown) may then be created and associated
with the scanned object. The newly created property (not
shown) is then stored along with the object so that the
property is available for future access requests.

[0041] In another embodiment, the version-specific prop-
erty may be encoded with a digital signature that may be
accessed and evaluated by other applications. This digital
signature can then be tested to determine whether the file is
a valid copy. In such a case, if the file has been tampered
with by another application, i.e., corrupted, the digital sig-
nature will be invalidated. An invalidated digital signature
may be treated as if the signature did not exist and, conse-
quently, the data object may be treated as invalid.

[0042] The version-specific attribute may further comprise
other security information to prevent unauthorized access to
the attribute or the data object. This information is used by
the services layer 236 as a means to lock the property from
use by inappropriate applications, such as virus applications.
The services layer may be configured to evaluate the ver-
sion-specific property on each access for the purposes of
ensuring that only valid applications access the property, or
the data object itself.



