US 2002/0059293 Al

stores the expression entered by the user so that case-
sensitivity, spacing, and other particulars may be displayed
back to the user as entered.

[0120] Turning now to FIG. 4, a diagram illustrating the
execution of an exemplary byte code is shown. In this
example, the user has specified a function in the form of an
expression. The expression is subsequently parsed to gen-
erate the byte code, which is a high level set of instructions
representing the desired operations and which is executed at
run-time. The execution of the byte code is diagramed in
FIG. 4.

[0121] FIG. 4 shows the execution of an exemplary VcSt-
mtCreateShape byte code 302. The byte code 302 creates an
instance of a particular shaped object when executed and
records a tokenized name for the object for a hash table
lookup. One exemplary implementation pseudocode for the
construction of the object shape to be generated by the byte
code 302 is shown as block 310.

[0122] In the implementation pseudocode block 310 for
constructing the shape of the object, when a VeStmtCreate-
Shape’s Perform() method is called, it calls a factory
object’s CreateShape() method to create a new shape object
and then stores a pointer to the object in a hash table owned
by a context object for later lookup when setting properties.
Finally, the method releases the reference to the shape
established during its creation.

[0123] The byte code 302 has an m_objectld property
which is a member of the standard CString class 300 to
provide storage for the tokenized name of the shape. The
byte code 302 has a m_factory property which is a member
of the abstract base class VcShapeFactory 304 which is
responsible for creating a shape within a scene. Derived
classes of VcShapeFactory 304 must override the pure
virtual CreateShape() method in order to create a particular
class of shape and add it to a canvas display list.

[0124] VcShapeFactory 304 creates an instance of a shape
object which is derived from the abstract base class VcShape
306. VcShape 306 is an abstract base class for all shape
objects. It provides a transaction-oriented, polymorphic
interface for setting shape properties. Derived classes of
VcShape are responsible for implementing rendering and
hit-detection support.

[0125] FIG. 4 also shows an abstract class VcStmtSet-
Property 320, which is an abstract class for byte code
statements to set the value of a shape’s property when
executed. Derived classes of VeStmtSetProperty 320 repre-
sent each data type. The abstract class VcStmtSetProperty
320 stores the tokenized name of the shape and a set of the
property identities necessary to uniquely address the prop-
erty. VcStmtSetProperty 320 has a property m_objectld
which is a member of the CString class 322 and an m_prop-
Path property which is a member of class VcPropertyPath
324. VcPropertyPath 324 stores an identifier for a property
that is unique within the shape’s set of properties, and
provides a pointer, m_next, to a linked list VcPropertyPath
to support aggregated shapes.

[0126] VcStmtSetProperty 320 in turn is inherited by
VestmtSetStringProperty 326 which sets the value of a
shape’s property to a string value, and which contains a
pointer to an abstract string function VcSftn 328 for evalu-
ating the property value before setting the shape’s property.

May 16, 2002

VcSftn 328 is derived from VcFunction which evaluates to
a string for a given context and the function is the root
element for a parsed expression tree containing the parsed
elements of the function.

[0127] One implementation of the VcStmtSetStringProp-
erty byte code 326 is shown in block 330. In this imple-
mentation for setting a shape’s property, when the VeStmt-
SetStringProperty’s Performo method is called, it retrieves
the shape from the context’s hash table. It then evaluates the
string function with the given context and passes the result
to the shape via the property path.

[0128] Turning now to FIG. 5, a diagram illustrating a
sample parsed property function is shown. The function in
this case is the VcStmtSetStringProperty function 350. The
function 350 has an object identification value “Text1”352,
which is a member of the class CString. This is the tokenized
name of the shape object containing the property to be set.
VcStmtSetStringProperty 350 is a sample byte code state-
ment which sets the value of the Text property owned by the
object Textl to the calculated value resulting from append-
ing last_name to first_name, separated by a space character.
In this example, m_objectld points to a string identifying the
target object, Textl; m_propPath points to the address of the
property to be set within the text object; and m_ftn points to
a string function which evaluates to the property’s value.

[0129] VcStmtSetStringProperty 350 has a property path
whose values are set in Block 354. Finally, VcStmtSetString-
Property 350 has been designated to execute a VcSftnCon-
catenate function 360. VcSftnConcatenate 360 is a string
function derived from VcSftn which concatenates the results
of two member string functions, m_ftn1 (first name+“”) and
m_ftn2 (last_name).

[0130] Within the block 360, two functions are further
specified. Traversing down the left branch of the tree, a
VcSftnConcatenate function 362 is designated. VcSftnCon-
catenate 362 is responsible for evaluating the expression
(first_name+“”) using its two member string functions,
m_ftnl and m_ftn2. Within the block 362 are two additional
functions, a VcSftnlLookup function 364, a string function
responsible for looking up the current value of the identifier
stored in m_ref (“first_name™), and a VcSftnConstant func-
tion 370, a string function responsible for storing a constant
string value.

[0131] The evaluation of the Lookup function 364 is
determined by character string 366, which is a standard
string class to provide storage for the name of the identifier,
“first_name”. The evaluation of the constant function 370
results in a character string which is a space (the string
constant “”’) in block 372.

[0132] Traversing down the right side of the tree from the
VcSftn concatenate function 360, a VeSftnlookup function
380 is evaluated. VcSftnLookup 380 is a string function
responsible for looking up the current value of the identifier
stored in m_ref (“last_name™). The evaluation of the VcS-
ftnLookup function 380 results in a character string.

[0133] An object model of the code generation process
from a scene is illustrated in more detail in FIG. 6. The
scene contains a list of drawing nodes representing the code
generators for each shape and logic element within the
scene. An object VcScene 400 defines a drawing layer or
canvas for all graphical objects displayed in the viewing

