US 2002/0059293 Al

area. A CreateMethod() function generates a series of byte
code statements that create and populate the scene with
graphical objects when executed. These statements are
stored in an object called VeCGMethod 410.

[0134] VcScene 400 contains a list m_nodes of objects
derived from class VcDrawingNode 402. VeDrawingNode
402 is an abstract base class for all shape and logic nodes
which represent the contents of a scene. VeDrawingNode
402 defines an interface, GetExecStmts(), for generating the
list of VcStmt execution statements in derived classes.
VcDrawingNode 402 is subclassed by VeShapeNode 404.
VcShapeNode 404 is an abstract base class for nodes which
generate shapes. Derived classes of VeShapeNode 404 gen-
erate the byte code statements necessary to construct and set
the properties of each type of shape.

[0135] VcShapeNode 404 in turn is subclassed by the
VcDataNode class 406, which is a class of shape node which
binds a data source to a graphical template representing the
layout of objects for each row in a query. The byte code
generated by the VcDataNode iterates over the result set
supplied by the data source, creates a set of objects, and adds
them to the active scene.

[0136] VcDrawingNode 402 is also inherited by a class of
drawing node VcLogicNode 408, which in turn is inherited
by VcDataSource 410. VclLogicNode 408 is a class of
drawing node which generates byte code that defines rela-
tionships between shape nodes and the user. VeDataSource
410 is a class of logic node representing an abstract source
of data. Derived classes are responsible for generating byte
code which results in a table of data used by the data node
to generate the graphics in a layout.

[0137] VcDataNode class 406 contains an instance of
VcDataSource 410. The VceDataSource 410 is inherited by a
class VcQueryDataSource 412. VcQueryDataSource 412 is
a class of data source responsible for interacting with a query
object to generate the byte code which constructs a query
instance, substitutes runtime parameters, and executes the

query.

[0138] The VcQueryDataSource 412 in turn points to a
query object m_query, a member of VcQuery 414 which
stores information about an SQL query, including the names
and types of columns and parameters. The VcQuery object
414 in turn has a set of columns stored in a VcColumn class
416 and a set of parameters stored in VcParameter class 417.
VcColumn 416 stores information about a column of data
that may be retrieved from the database so that it may be
referenced by the context object used by the byte code
execution statements. VcParameter 417 represents a named
placeholder object acting as an argument to a SQL SELECT
statement. Before the SQL statement can be executed, the
parameter is replaced with the runtime value of the param-
eter.

[0139] The VcScene object 400 generates an instance of
the class VeCGMethod 410 when its CreateMethod() mem-
ber function is called. VcCGMethod 410 in turn has a set of
objects that belong to an abstract base class VcStmt 420.
VcStmt 420 is an abstract base class for all byte code
statements. Its pure virtual method, Perform(), defines an
execution interface that must be implemented by all derived
classes. The VcStmt abstract base class 420 is inherited by
a number of byte code statements including 422, 424, 426,

May 16, 2002

428 and 430. VcStmtCreateShape 422 is a byte code state-
ment which creates an instance of a particular shape object
when executed. The statement 422 records a tokenized name
for the object for hash table lookup. VcStmtCreateQuery
424 is a byte code statement which creates an instance of a
particular query object when executed. VcStmtBeginProp-
erties 426 is a byte code statement which notifies a shape
instance that its properties are about to be set. VcStmtSet-
Property 428 is abstract class for byte code statements which
set the value of a shape’s property when executed. Derived
classes represent each data type stores the tokenized name of
the shape and the set of property ID’s necessary to uniquely
address the property. Finally, VeStmtEndProperties 430 is a
byte code statement which notifies a shape instance that
changes to its properties are complete and that it can perform
any calculations which depend on more than one property.

[0140] The object model of the code execution process is
similar to the object model shown in FIG. 4. Briefly, the
VestmtCreateShape byte code records a tokenized name for
the object in a hash lookup table and creates an instance of
a particular shaped object when executed. The VeStmtCrea-
tesShape byte code statement contains a factory object
derived from a VcShapeFactory abstract base class which is
responsible for creating a shape within a scene. Additionally,
the VcStmtSetProperty abstract class stores the tokenized
name of the shape and the set of property ID’s necessary to
uniquely address the property. The VcStmtSetStringProp-
erty byte code statement sets the value of a shape’s property
to a string value and contains a pointer to an abstract string
function for evaluating the property value before setting the
shape’s property.

[0141] Turning now to FIG. 7, a property sheet entry
process 440 is shown. In using the property sheet, a user
enters an expression (step 442). The expression is then
parsed (step 444) and checked for validity (step 446). In the
event the expression is invalid, the process clears the runt-
ime value using the design value as needed (step 448) and
displays an error message (step 450). Otherwise, in the event
that the expression is valid, the process creates a function
and stores the function as the run-time value (step 452).
Next, the process determines whether the function is a
constant (step 454), and if so, clones the function and stores
the design-time value in place thereof (step 456).

[0142] Next, the process invalidates a byte code execution
image, which contains a run-time executable code for the
byte code (step 458). It then checks whether the run-time
display needs to be automatically updated (step 460). If so,
byte code is generated (step 470) and executed (step 472).
From step 460 or step 472, the process exits (step 474).

[0143] Turning now to FIG. 8, a process 820 for visually
manipulating an object is detailed. First, the process deter-
mines which object property maps to which changed
attribute (step 822). Next, a constant function is created to
represent the new attribute value which is then stored as
run-time property value and design-time property value
(step 824). The byte code execution image is then invali-
dated (step 826). The process then checks whether the
run-time display needs to be automatically updated (step
828). If so, the byte code is generated (step 830). Step 830
is illustrated in more detail in FIG. 9. From step 830, the
process then executes the byte code (step 832). Step 832 is
illustrated in more detail in FIG. 11. From step 828 or step
832, the process exits (step 834).

