US 2002/0059293 Al

[0144] Turning now to FIG. 9, a process 600 for gener-
ating byte code is shown. The process takes as inputs
previously stored application resources (step 602) and
obtains a first scene (step 604). The process then obtains a
first node in the scene (step 606). Next, the byte code
execution statements for the node are retrieved (step 608).
This step is illustrated in more detail in FIG. 10. From step
608, the process determines whether additional nodes need
to be processed (step 610), and if so, obtains the next node
(step 612) before looping back to step 608.

[0145] When all nodes have been processed, the process
creates the VcCGMethod and stores statements associated
with the scene (step 614). Next, the process determines
whether additional scenes remain to be processed (step 616).
If so, the next scene is obtained (step 618) and the process
loops back to step 606 to continue the byte code generation
process. When all scenes have been handled, the process
then creates the byte code execution image (step 620) before
exiting (step 622).

[0146] Referring now to FIG. 10, a process 630 for
obtaining byte code execution statements for an object node
is shown. First, the process determines the node type (step
632). If the node is a shape, the process generates a shape
creation statement (step 634) as well as a statement to begin
property capture (step 636). Steps 638-644 then generate
statements to set each retrieved property. Finally, the process
creates a statement to commit the properties (step 646).

[0147] On the other hand, if the node is a query data
source, the process obtains a query and generates a param-
eterized SQL statement (step 648). The process then deter-
mines column names to be used as referenceable identifiers
(step 650). Next, a statement is created to create a query
(step 652). Steps 654-660 then create one or more statements
which set each query parameter value. Finally, the process
creates a statement to execute the query (step 662). From
step 646 or step 662, the process exits (step 664).

[0148] Referring now to FIG. 11, a process 666 to execute
the byte code is shown. First, an execution context is created
(step 668). The process then calls VcCGMethod Performo
method (step 670). The statements are retrieved (step 672).
Next, the statement is classified (step 674). From step 674,
when a VcStmtCreateShape statement is encountered, the
process generates a new shape (step 676) and stores the
shape in a context-hash table using a tokenized shape name
(step 678). From step 674, when a VeStmtBeginProperties
statement is encountered, the process looks up the shape
information in the hash table (step 680). The process then
calls the shape’s OnPropertiesBegin() method (step 682).
When a VeStmtSetProperty statement is encountered, the
process looks up the shape information in the hash table
(step 684). It then evaluates the property expression (step
686) before calling the shape’s SetProperty() method to
assign the value to the property. When a VcStmtEndProp-
erties statement is encountered, the process looks up the
shape information in the hash table (step 690). It then calls
the shape’s OnPropertiesEnd() method (step 692). The
shape is then initialized (step 694) and added to a canvas
display list (step 696).

[0149] From step 678, 682, 688 or 696, the process then
checks whether additional statements need to be executed
(step 698) and if so, the next statement is obtained (step 800)
before the process loops back to step 674.

May 16, 2002

[0150] From step 698, the process then deletes the execu-
tion context (step 802) and refreshes the canvas (step §04).
Finally the process exits (steps 806).

[0151] Achart illustrating a graph editing system is shown
in FIG. 12. A scene graph 480 provides a hierarchical
representation of an application. Each element of the scene
graph 480 is called a node and the node is used in generating
a byte code. Additionally, two views 482 and 484 of the data
are shown. The view 482 is a layout (a map) showing data
that has been retrieved from two datasets.

[0152] In the view 484, a datapoint may be represented as
a single image 485, which is highlighted in FIG. 12. The
image 485 is shown in the design mode with a placeholder
image. Attributes associated with the image 485 are shown
in a window 486. The user can edit any data element since
each data element has its own drawing window. Thus, a
graph may be placed at the datapoint so that a graph exists
within a data point.

[0153] Since the editing system of FIG. 12 allows the user
to define graphs within data points that in turn are nested
within graphs themselves, the editing system of FIG. 12
provides a way to drill down and see more detail. Thus,
when used to show scenes with varying levels of detail, the
user may zoom into a dot which turns into a graph and, when
the user zooms into the graph, its datapoints turn into
additional graphs to allow the user to drill down for more
detail. The graph editing system provides a convenient way
of editing the representation of a single datapoint and any
arbitrary representation for a datapoint that may be as
general as the parent scene itself.

[0154] The mathematics of a wormhole is discussed next.
Wormholes are special objects that allow a user to look
through a window in one scene to another scene. FIG. 13
illustrates this effect and shows how a composite zoom
factor is computed for the target scene.

[0155] FIG. 13 shows a wormhole, which is a type of
hyperlink that allows the user to pass context information
through the hyperlink and at the same time see though the
hyperlink to the other side. Since the other side of the
hyperlink is observable, that side is “transparent” to the user.
In FIG. 13, a wormhole 490, shown as a window from a first
scene 492 to a second scene 494. The wormhole 490
provides state information, as opposed to a conventional
hyperlink which is stateless. From a user location 491,
relationships between a first elevation (elev,) 496 to the first
scene 492 and a second elevation (elev,) 498 to the second
scene 494 may be expressed as:

1
Z00Mgcene;
1

elev, = + -1
Zo0Mscenes L ZOOMyommiole

elev) =

[0156] In this case, each of the Zoom factors represents a
magnification factor. Moreover, the Zoom factors are the
reciprocal values for the associated elevation parameters.
For instance, at a 100% Zoom factor, the elevation param-
eter is 1, while at a 200% Zoom factor, the elevation
parameter is 0.5.

