US 2002/0059293 Al

[0157] The wormhole window sets the values of param-
eters that have been defined for the scene. The wormhole
window can also act as a type of lens that can apply
magnification to the target scene. The target scene of a
wormhole may be the same as the source scene for recursive
display of the same scene. This is particularly useful since an
incremental zoom factor applied by the wormhole can be
used to reduce clutter in dense regions of data or alterna-
tively to provide additional magnification for increased
levels of detail. The wormhole has a parameter that defines
the recursion limit so that the recursion does not continue
infinitely.

[0158] The user can jump through a wormhole in order to
“drill down” for more information and also to “activate” the
objects in the target scene. This also eliminates the effects of
the incremental zoom factor as well as frees up memory used
by objects in the first scene. As the user navigates a world
and interacts with objects using the mouse, notification
events are generated which may trigger behavior. This
behavior is determined by the developer at design time and
consists of the following two optional steps (in order):
setting the value of scene and/or global parameters, and
executing an action.

[0159] Wormbholes provide control over the values of
scene parameters through a SceneParameters object listed in
the Object Inspector. The SceneParameters object is a child
object of the wormhole and contains a property for each
parameter. If the target scene is not parameterized, the
SceneParameters object may not be displayed in the Object
Inspector. The values contained by the object are used to set
the scene’s properties at runtime.

[0160] Three types of parameters drive runtime values in
queries and also monitor and control various user context
variables: global parameters, scene parameters, and query
parameters. Global parameters are exposed in the runtime
user as properties to be set or monitored by the container
application. Further, built-in global parameters may be used:
UserX (tracks or sets the user’s current horizontal offset
from center in inches); UserY (tracks or sets the user’s
current vertical offset from center in inches); UserZoom
(tracks or sets the user’s current zoom (magnification)
level); and UserClass (contains the name of the user’s profile
class).

[0161] Query parameters are set by the data source before
the query is executed. Scene parameters may be set by
wormholes or by event actions. They have the following
attributes:

[0162] Name—parameter identifier.
[0163] Data type—value type.

[0164] Description—available for internal documen-
tation.

[0165] Default value—value used if not set by a
wormhole’s

[0166] ScencParameters child object or by an event
action. If no default value is available, the scene
cannot be viewed.

[0167] User classes may be used for customizing the
behavior or appearance of the virtual world based on user
identity. For example, a wormhole to sales forecasts may

May 16, 2002

only be visible to sales personnel and executive staff mem-
bers, or a hospital floor plan layout may highlight vacant
beds for an administrator versus cardiac patient beds for a
cardiologist. The default user class in all new worlds is
“Anonymous.”

[0168] The current user class for a world is stored in the
UserClass global parameter. A property value or event
method can be based on the current user class by use of the
IsUser(class_name) property function which returns a true
or false value depending on whether the UserClass variable
is a member of the class_name user class. Standard boolean
expressions can also contain the UserClass parameter for
direct comparison or display.

[0169] User classes can be subclassed in order to refine a
class further. A user subclass of one class can also be a
subclass of another class, thus resulting in a flexible, mul-
tiple-inheritance hierarchy of user classes. When a user class
is deleted by the user and it exists as a subclass of more than
one other user class, the user may be asked whether or not
to delete all occurrences of the user class or just to delete the
selected instance.

[0170] Turning now to FIG. 14, an object model of a
wormhole is shown in more detail. A VcScene class 500
defines the drawing layer (canvas) for all graphical objects
displayed in viewing area. VcScene 500 provides a set of
parameters which may be referenced by the properties of
nodes contained within the scene. Before the scene can be
rendered, each parameter must be set similar to the way
arguments to a function must be defined before the function
is called. A wormhole settings node then supplies the cal-
culated settings for each scene parameter when the scene is
viewed through the wormbhole.

[0171] The VcScene class 500 has properties that are a
member of a VcParameter class 502 and a list of nodes
derived from a VcDrawingNode base class 504. VcParam-
eter 502 stores information about a scene parameter, includ-
ing its name and data type, while VcDrawingNode 504 is an
abstract base class for all shape and logic nodes which
represent the contents of a scene. VcDrawingNode 504
contains properties which may be constant or calculated.
Calculated properties may depend on one or more scene
parameters.

[0172] The VcDrawingNode abstract base class 504 in
turn is inherited by a VcShapeNode 506, which is further
inherited by VcWormholeNode 508. VcShapeNode 506 is
abstract base class for all visible node types. Derived classes
of VcShapeNode 506 implement the specific attributes and
behavior of each type of shape. VeWormholeNode 508 is a
class of shape node in a scene which links to another scene.
It contains a pointer to a settings node for setting the values
of all scene parameters before the scene is rendered.

[0173] VcWormholeNode 508 has a m_sceneParamSet-
tings property which is a member of the VcWormholeSet-
tingsNode 512 class. VcWormholeSettingsNode 512 is a
class of logic node holding wormhole-specific settings for
each parameter in the connecting scene. These settings are
evaluated and passed to the scene before it is rendered in the
wormhole.

[0174] VcWormholeSettingsNode 512 is also derived
from VcLogicNode 510, which in turn is derived from the



