US 2002/0059293 Al

VcDrawingNode 504. VcLogicNode 510 is an abstract base
class for nodes which defines relationships between shape
nodes and the user.

[0175] FIGS. 15 and 16 show exemplary wormhole
usages. FIG. 15 shows four wormholes: a portfolio-risk-
management wormhole 700, a market-data wormhole 710,
an investments-under-consideration wormhole 720 and a
first-call-analyst-recommendation wormhole 730. The port-
folio-risk-management wormhole 700, in turn shows three
detailed wormholes 702, 704 and 706 displaying a third
level view of the scene and a chart 708. Each of the three
detailed wormholes 702, 704 and 706 shows financial per-
formance associated with three separate funds or portfolios.
Moreover, views of a given scene arising from one worm-
hole representing one fund or portfolio may be different
from views of the same scene arising from another worm-
hole representing a different fund. Thus, for example, by
drilling down the portfolio risk management wormhole 700,
through one of the funds 702, 704 or 706, and drilling down
to a company in a particular portfolio, context information
is accumulated with every drill-down so that the resulting
view of the company is generated in relationship to the
specific fund or portfolio. The information may include the
quantity of the company’s stock held by the fund, and the
duration of ownership of the company’s stock, among
others.

[0176] The scene being presented in each wormhole in
FIG. 16 is parameterized in company_ID in a manner
analogous to an argument to a function. In this case, the
scene itself has an argument that specifies what company the
user is looking at and the scene is accordingly customized.
Thus, when the user looks through any of these wormholes,
the scene looks different because it takes on the identity of
the specific wormhole being viewed by the user.

[0177] As discussed above, the system provides dynamic
views of data without programming expertise. Users are thus
moved closer to the data so that application development
time is reduced. User interfaces may be created quickly and
easily for information rich databases and for applications
such as data warehousing and decision support. Further,
limitations inherent in conventional forms-based or report-
based applications are avoided.

[0178] Moreover, the techniques described here may be
implemented in hardware or software, or a combination of
the two. Preferably, the techniques are implemented in
computer programs executing on programmable computers
that each includes a processor, a storage medium readable by
the processor (including volatile and nonvolatile memory
and/or storage elements), and suitable input and output
devices. Program code is applied to data entered using an
input device to perform the functions described and to
generate output information. The output information is
applied to one or more output devices.

[0179] Each program is preferably implemented in a high
level procedural or object-oriented programming language
to communicate with a computer system. However, the
programs can be implemented in assembly or machine
language, if desired. In any case, the language may be a
compiled or interpreted language.

[0180] Each such computer program is preferably stored
on a storage medium or device (e.g., CD-ROM, hard disk or

May 16, 2002

magnetic diskette) that is readable by a general or special
purpose programmable computer for configuring and oper-
ating the computer when the storage medium or device is
read by the computer to perform the procedures described.
The system also may be implemented as a computer-read-
able storage medium, configured with a computer program,
where the storage medium so configured causes a computer
to operate in a specific and predefined manner.

[0181] Other embodiments are within the scope of the
following claims.

What is claimed is:

1. A computer-implemented property entry sheet for con-
textually assigning a property of an object associated with an
application, comprising:

an attribute name section adapted to receive an identifi-
cation of the property; and

a property input section adapted to receive a functional
expression for the property identified by the attribute
name section, the functional expression being refer-
enceable at run-time as a data value.

2. The property entry sheet of claim 1, wherein the

functional expression includes one or more of the following:

a function;

an operator,

a database column name;
a variable; and

a constant.
3. The property entry sheet of claim 1, further comprising:

an attribute name section adapted to receive an identifi-
cation of the property; and

a property input section adapted to receive a static data
value for the property identified by the attribute name
section.

4. The property entry sheet of claim 1, wherein the object
has a plurality of properties and wherein the attribute name
section and the property input section of each property form
a name-value pair for each property.

5. The property entry sheet of claim 1, wherein the
functional expression is parsed to generate a function which
is stored as a run-time value.

6. The property entry sheet of claim 5, further comprising
byte code associated with the function.

7. The property entry sheet of claim 1, wherein the
function is cloned and stored as a design time value if the
function is a constant.

8. The property entry sheet of claim 1, wherein an error
message is displayed if the expression is invalid.

9. The property entry sheet of claim 1, wherein an existing
byte code execution image is invalidated.

10. The property entry sheet of claim 9, wherein new byte
code is generated to replace the existing byte code execution
image.

11. A method for editing a computer-implemented object,
the object having a property entry sheet for assigning a
property of an object associated with an application, com-
prising:



