US 2008/0046393 Al

search to traverse an exploit or condition for multiple times,
the set union operation needs to keep duplicates. Hence,
loops must be avoided by maintaining a predecessor list for
each vertex as in standard breadth-first search (BFS) [2]
(although the search discussed above is different from a
BES).

[0071] Definition 4 states the relational queries used to
enumerate relevant exploits or to generate the logic formula
in network hardening. The two queries simply traverse the
attack graph given by Definition 2. The two relations in the
definition keep duplicates in set union operations. Notice
that the actual construction of the logic formula (adding the
and or connectives) is external to the relational queries and
may easily be incorporated.

[0072] Definition 4. Given relations hh(HH), hc(HC),
cv(CV), ve(VC) and a nonempty relation Q,(HC), let
Q4(EX) be an empty relation. Define

[0073] Q6=HHS,Hd,V((Q7_hC)><Qec)
[0074] Q7=HH,C(Q6><ch)

Example 10

[0075] FIG. 6 shows Table 4, an example of enumerating
relevant exploits and network hardening. Specifically, Table
4 shows the iterations corresponding to the procedure in
Example 8 and Example 9. Originally, Q,{(1, y)}.

[0076] Reachability From Subsets of Initial Conditions
and Incremental Updates of Attack Graphs: Many analyses
ask a similar question, that is whether the goal condition is
still satisfiable if a given subset of initial conditions are
disabled. The question may arise when trying to determine
the potential effect of enforcing a security measure (so some
initial conditions will be disabled), or when trying to decide
whether the goal condition is reachable with only stealthy
attacks [ 18]. The question may also be asked simply because
the network configuration has changed and some initial
conditions are no longer satisfied (on the other hand, new
initial conditions can be easily handled with more iterations
of the queries in Definition 2.) In each case, it may be
possible to recompute the attack graph from scratch, with the
given conditions removed from the relation hc. However,
this may not be desirable, especially when the attack graph
is much larger than the set of conditions to be disabled.
Instead, one may incrementally update the attack graph by
computing the effect of disabling the given conditions. The
conjunctive nature of the required relation may be taken into
account, but in a different way, as illustrated in Example 11.

Example 11

[0077] 1In FIG. 1, suppose the condition (2, x) is disabled.
Then the exploits (1, 2, A) and (3, 2, A) may no longer be
realized. Then the condition (2, y) becomes unsatisfiable,
because the condition (2, y) may only be implied by the
above two exploits. Finally, the exploit (2, 1, A) may no
longer be realized. However, the condition (1, y) should still
satisfiable, due to another exploit (3, 1, A).

[0078] Example 11 shows that such a negative analysis is
quite different from the previous ones. The previous
searches are unidirectional in the sense that the edges are
only followed in one direction (either forwards or back-
wards). However, the above analysis follows edges in both
directions. For example, after the forward search reaches the

Feb. 21, 2008

condition (1, y) from the exploit (2, 1, A), it must go back
to see whether other exploits also imply the condition (1, y)
(in this case, the exploit (3, 1, A) does s0). Definition 5 states
the relational queries for this purpose. The first query simply
derives unrealizable exploits from unsatisfied conditions.
The next three queries use two set difference operations to
derive the unsatisfied conditions while taking into account
the conjunctive nature of the require relation. Finally, the
results may be collected.

[0079] Definition 5. Given relations hh(HH), hc(HC),
cv(CV), ve(VC) and a nonempty relation Q,,(HC) as a
subset of he, let Qx(EX), Q4(EC), Q,,(EC), Q,, and Q. be
empty relations. Define

[0080] Q8=HHS, Hd, v(Q1: P<IQ..)
[0081]  Qu=QsP<Q..

[0082] Q10=Qec><HH,C(Q9)_Q9

[0083] Q=TT c(Qo)-TTg (Q;0)
[0084] Q.~Q.UQq

[0085] Q.=Q.UQy,

Example 12

[0086] FIG. 7 shows Table 5, an example of incremental
updates. Specifically, Table 5 shows the iterations corre-
sponding to the procedure in Example 11. Originally, Q,,=

{@ 0}

[0087] Empirical Results: As proof of concept, the analy-
ses discussed in the previous section were implemented. The
queries were written in PL/SQL and tested in Oracle 91 in its
default settings on a Pentium IV 2 GHz PC with 512 MB
RAM. Preliminary experiments tested the queries against
the attack scenario originally studied in[18, 1] 3. The results
of the analyses match those in the previous work, which
justifies the correctness of the techniques. Next, the perfor-
mance of the techniques were tested. There were two main
objectives. First, determine whether the running time of the
queries is practical for interactive analysis. For most deci-
sion support systems, the typical delay to a query that is
considered as tolerable in interactive analyses is usually in
a matter of seconds. Such a short delay is also critical to the
analysis of attack graphs, especially when the analysis is
used for real-time detection and prevention of intrusions.

[0088] Second, determine whether the techniques scale
well in the size of attack graphs. Although the attack graph
may be very large for a large network, an analysis and its
result usually only involves a small part of the attack graph.
The running time of an analysis thus depend on how
efficiently an analysis searches the attack graph. Mature
optimization techniques available in most databases may
transparently improve the performance and make the analy-
ses more scalable. To test the queries against large attack
graphs in a manageable way, the number of vertices in the
original attack graph were increased by randomly inserting
new hosts with random connectivity and vulnerabilities. The
same set of analyses was executed in the new network and
the running time of each analysis measured. The main
results are shown in FIG. 8. All the results have 95%
confidence intervals within about 5% of the reported values.

[0089] The left-hand side shows the running time of
generating the attack graph in the size of that attack graph.



