US 2004/0187096 Al

be described below. An object which depends from a warp
object is herein referred to as a warped object.

[0083] A warp object may be similar in nature to the Value
object described above, as shown below. Again, in order to
provide the additional functionality required, the WarpOb-
ject provides additional data repositories for storing the
additional information.

WARPOBJECT CLASS - TABULATED VIEW
CLASS NAME: WarpObject

ATTRIBUTES Type Comments
Name created depending on type
specified
warp__master__value string
warp__rule string

[0084] The WarpObject class, from which the WarpObject
is created, has the necessary accessor methods for providing
the required functionality, for example, to obtain the refer-
ence of an object from a string containing a relative location
of the object (using, for example, the above-described tree
navigation functionality). Similarly, the warp object acces-
sor methods also provide the required functionality to create
an object from a class depending on, for example, the value
of an attribute as defined by the warp master value and the
warp rule.

[0085] The class definition for the Video Card class may
thus be expressed as:

VIDEO CARD CLASS - TABULATED VIEW
CLASS NAME: VideoCard

ATTRIBUTES: Type: Comments

video_memory enum
pixel clock integer
display warp__object:

Choice: ‘1 MB’, ‘2 MB’, ‘4 MB’

warp__master_ value: ..\..\computer__
type; warp__rule:

use class Monitor if warp__master__
value = ‘desktop’;

use class LCD_ screen if warp__
master__value = ‘laptop’

[0086] The pseudo code for the VideoCard class declara-
tion may thus be expressed as:

VIDEOCARD CLASS - PSEUDO-CODE

class VideoCard; # define the video card class

attributes: # define the attributes required by the VideoCard class

{

video__memory: # define the characteristics of the variable
video__memory

type : enum ; # it’s of type enum
having a choice as defined...

choice : (*1MB’, 2MB’, ‘4MB’);

pixel__clock:

Sep. 23, 2004

-continued

VIDEOCARD CLASS - PSEUDO-CODE

{
type: integer;
{
b
display:
type: warp_object; # declares that the monitor is of type
warp__object class
warp__master__value: ..\..\computer__type;
warp__rule:
use class Monitor if warp__master_ value =
“desktop’;
use class LCD__screen if warp__master__value =
‘laptop’;
b
b
b

[0087] The display attribute declaration is used to create a
warp object depending from the Video Card object. The
warp object uses the warp master value (i.e. the computer
type attribute 103) and the warp rules to determine which
object (in this case a Monitor or LCD screen object) should
be created depending on the value of the warp master, as
illustrated in FIG. 4. Through the warp object a call, for
example, to set the screen resolution, will be directed to
either the screen resolution attribute 110 of the monitor
object or to the screen resolution attribute 120 of the LCD
screen object 116, depending on which object has been
created.

[0088] FIG. 7 is a flow diagram outlining one way in
which the main steps may be performed according to an
embodiment, using a Ped-type implementation, for request-
ing the value of screen resolution (step 700). If the warp
object (105) has not been created yet (step 702) it is created
(step 704). The warp master value is obtained (step 706) and,
for example using the previously mentioned tree navigation
functionality, the reference of the warp object is registered
with the warp master value (step 708). Providing that the
warp master value has been defined (step 710) the warp rule
is obtained (step 712) and is applied to the warp object (step
714) leading to the creation of the warped object (step 720).
In the present example either a Monitor object or an LCD
screen object will be created, as defined by the warp rule in
accordance with the value of the computer type attribute
103. The value of the screen resolution attribute of the
created warped class is then returned to the requesting
function.

[0089] If the computer type attribute 103 is changed, for
example from ‘desktop’ to ‘laptop’, then the warp object 105
will, using the above-described registration mechanism,
create an LCD screen object 116, and all future accesses will
be redirected to this object. Preferably the attribute values of
the monitor object will be copied over to the LCD screen
object where possible, for example using a ‘best effort’ copy.
Any attribute values which do not exist in the LCD screen
object will therefore not be copied across. Preferably the
warp object 105 performs this functionality.

[0090] A third type of dependency which may exist
between classes is where an attribute value of a class is

