US 2004/0187096 Al

dependent on one or more attributes of one or more other
classes. For example, referring back to the example shown
in FIG. 1, it may be that the refresh rate attribute 112 is
computed from the screen resolution attribute 110 and the
pixel clock attribute 107. In such a case, it may not be
necessary that the screen resolution attribute be automati-
cally updated each time one of the other attributes is
changed. Rather, it may be preferable that the value of the
refresh rate attribute is computed each time its value is
retrieved. In this case, known hereinafter as a compute
value, the screen resolution attribute within the monitor
class class declaration may be expressed as:

screen__resolution: # define the characteristics of the
variable screen_ resolution

{
type : compute; # is of type compute object
variables:
{
name: ‘rate’, location: ..\refresh__rate ;
name: ‘clock’, location: ..\..\pixel__clock;
I3
compute__formula: ‘rate / clock’
}

[0091] Thus, each time the accessor method is called to
retrieve the value of the attribute screen_resolution, the
compute object (which is the attribute type of screen_reso-
lution) will retrieve, for example using the aforementioned
tree navigation functionality, the values of the variables
specified, and will apply the compute formula specified to
determine the value of the attribute screen_resolution.

[0092] In a further embodiment of the present invention,
each attribute in the class declaration may be assigned an
identifier indicating a privilege level required in order to be
able to access the attribute. This may be useful, for example,
for preventing a casual user from making modifications to
system critical configuration parameters by effectively ‘hid-
ing’ any such attributes. For example, a number of different
levels of privilege such as a ‘user’, ‘support’, ‘expert’, etc.
may be defined. If a user is identified as a ‘support’ user, only
attributes having a privilege level of ‘user’ or ‘support” will
be accessible. Any attempt to access attributes having a
privilege level above ‘support’ will result in an error and will
be refused.

[0093] Using the techniques described herein, a configu-
ration model for a system can be quickly and easily imple-
mented using, for example, declarative, rather than hard-
coded, class implementations. Such a system may be used
for populating the attributes of the different system elements,
and ensuring that account is taken of any attributes or objects
which are dependent on any other attribute or object. This
may be useful, for example, by allowing a default attribute
value to be specified based on the value of another attribute
value.

[0094] Such a configuration tree model may be used, with
an appropriate interface, to enable configuration parameters
for a configuration tree to be created and verified. Such an
interface may include, for example, a command line type
interface in which a user enters configuration details, for
example by specifying an object and an attribute value.
Alternatively, an interface may be provided which reads an

Sep. 23, 2004

existing configuration file and which populates the configu-
ration tree using the values read from the configuration file.
This permits the integrity of the configuration file to be
verified helping ensure the validity of the configuration
parameters contained therein. Preferably, such a system
enables a configuration file to be created by writing to a
configuration file the attribute values associated with each
object in the configuration tree.

[0095] In Perl, for example, use may be made of the built
in tie mechanisms which can be used to ‘hide’ much of the
complex functionality from the user, thereby enabling the
class declarations to remain relatively simple. For example,
the Perl tied mechanisms provide a convenient way of
allowing the implementation and behavior of built in data
types to be altered, which can be used to implement the
above-described functionality without introducing unneces-
sary complication into the computer program.

[0096] Those skilled in the art will appreciate that the
techniques described with reference to the various embodi-
ments described above may be implemented in various
different manners and in a variety of different programming
languages. It will also be appreciated that one way in which
the above describes techniques can be provided is in the
form of an article of manufacture comprising a program
storage medium having computer readable program code,
for example, for use on a general purpose computer system.

1. A method, within an object-oriented computer program,
of creating a dependency between a first class and an
element of a second class in a hierarchical arrangement of
classes created by a class-making module using declarative
definitions of each class,

the method comprising:
defining, within the first class definition,

position information defining the relative position
within the hierarchy of the element of the second
class, and

rule information defining the nature of the dependency;
and incorporating functionality within the first class
to interpret the rule and position information to
create the dependency.

2. Amethod according to claim 1, wherein the element of
the second class is an attribute, and wherein the rule and
position information is associated with an attribute of the
first class, the incorporated functionality being arranged for
performing the steps of:

obtaining the value of the attribute of the second class
using the position information; and

determining a value of the attribute of the first class by
using the obtained value and the rule information.
3. A method according to claim 2, wherein the step of
obtaining the value of the attribute of the second class
further comprises:

interpreting the position information to extract the relative
location of the second class;

retrieving the reference to the second class by recursively

navigating the hierarchical arrangement of classes in

accordance with the interpreted position information.

4. A method according to claim 2 or 3, wherein the step
of obtaining the value further comprises:

