US 2004/0187096 Al

COMPUTER PROGRAMMING

[0001] The present invention relates to computer program-
ming and, more particular, to computer programming tech-
niques for use in conjunction with a declarative approach to
defining classes.

[0002] Many modern day computer-based systems are
both complex in nature and are highly configurable enabling
such systems to be specifically tailored for the differing
requirements of individual users. In many systems, such is
the level of complexity surrounding the way in which such
systems may be configured it is becoming increasingly
difficult for users to comprehend and fully understand the
full range of configuration options available to them. Con-
sequently, many computer-based systems may be less than
optimally configured which means that important functions
or aspects, which producers of such systems often go to
great lengths to develop, may be seldom used or not used in
the intended manner.

[0003] Computers, computer operating systems, web serv-
ers and telecommunications systems are just a few examples
of such systems.

[0004] Many of these computer-based systems use con-
figuration files, often in human readable form, which pro-
vide configuration parameters for different system elements,
and which are used during initialization of the system to
configure the appropriate system elements with the appro-
priate configuration parameters. For complex systems the
configuration files may run into many thousands of lines of
data describing each of the individual elements to be con-
figured along with the data required for configuring the
elements.

[0005] Systems providers often provide standard or
default configuration files which may be used to provide a
‘typical’ system configuration. Such default configuration
files are generally not, however, optimized for any particular
user. Thus, generally speaking, the user is required to make
modifications to the configuration files to ensure that the
systems are suitably configured for their particular require-
ments. For example, to ensure optimum performance, a
computer operating system may need to be configured for
the particular type of computer hardware used to run the
operating system. Although manual editing of a configura-
tion file with, for example, a text editor is generally possible,
it typically requires a thorough understanding of the changes
being made and the possible implications that a modification
to one system element may have on another system element.
Since the configuration files are only generally used during
the initialization of a system, any errors or inaccuracies
which are introduced will usually only be noticed when the
system is initialized. Any such problems may cause the
system to fail to initialize or may result in an incorrectly
configured system. In such cases, the configuration file may
require re-editing and the system re-initializing. Such a
process can be time-consuming and particularly frustrating
for the system administrator.

[0006] To help overcome these problems, it is known to
use computer programs to assist in the creation or modifi-
cation of configuration files. Such computer programs model
the configuration behavior of the system to be configured
and may provide a degree of checking and validation which
aim to help prevent erroneous or incorrect configuration

Sep. 23, 2004

parameters from being stored in the configuration file. Once
the configuration parameters have been entered using the
computer program, a configuration file may be created or
modified. Webmin (available through http://webmin.com) is
an example of one such computer assisted configuration file
creation tool which is used for creating/modifying configu-
ration files for Unix systems. Other examples include Linux-
conf (http://www.solucorp.qc.ca/linuxconf/), used for creat-
ing and managing Linux configuration files, and Swat,
which is a web administration tool for Samba.

[0007] Many systems requiring configuration may be rep-
resented using a hierarchical tree-like structure (hereinafter
referred to as a configuration tree), as shown in FIG. 1,
wherein system elements are represented by ‘nodes’ of the
tree and attributes of the system elements are represented by
‘leaves’ of the tree. In such trees a node may typically be
connected to other nodes, but a leaf may typically only be
connected to a single node.

[0008] FIG. 1 shows part of a configuration tree repre-
sentation 100 of a simple computer system. A computer 102
has a number of system elements: a video card, node 104; a
monitor, node 108; and a processor, node 114. The computer
node 102 has an attribute of computer type, 103, video card
has an attribute of video memory, leaf 106, and pixel clock,
leaf 107, the monitor has attributes of screen resolution, leaf
110, and refresh rate, leaf 112, and the processor has
attributes of clock frequency, leaf 118, and cache size, leaf
120.

[0009] A computer program used to assist in the creation/
modification of a configuration file can model the configu-
ration behavior of each system element, for example, by
modeling any particular requirements such as limits on the
values an attribute may take, the type of attribute and so on.
Although there exist many different programming tech-
niques by which this may be achieved, it will be generally
appreciated that the techniques of so-called object oriented
programming are particularly suited.

[0010] Object oriented programming broadly involves
modeling system elements, or the nodes of the tree, as
software objects, and representing the attributes of the
system elements, or leaves of the tree, as attributes of the
software objects. A software object provides containers for
storing data (i.e. the attributes) and methods for accessing,
modifying and storing the data. Software objects are gen-
erally created from a class definition which acts as a generic
blueprint or template for a software object and defines the
nature of the data containers and methods. The numerous
benefits and advantages of object-oriented programming
will be well appreciated by those skilled in the art.

[0011] In order to implement a computer program for
modeling the configuration behavior of the various system
elements, a class must typically be written for each system
element. A class, as is well known in the art, defines,
amongst other things, the name of the class, the attributes of
each class and methods which enable the attributes to be
accessed and modified, known as accessor methods. A
certain degree of ‘intelligence’ may be built into the accessor
methods to provide functionality such as range and type
checking of attributes.

[0012] In some situations system elements may have
dependencies which need to be modeled by the computer



